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From the Editor

In this issue

— We have four technical columns!

– Emmanuel Filiot and Pierre-Alain Reynier survey word functions and transducers
in Mikołaj Bojańczyk’s Automata column.

– In the Complexity column edited by Neil Immerman, Toniann Pitassi and Iddo
Tzameret discuss the latest results connecting proof complexity with algebraic
complexity.

– This year’s Gödel Prize winners, Stephen Brookes and Peter O’Hearn, describe the
origins of concurrent separation logic in our column on Semantics, edited by Mike
Mislove and Prakash Panangaden.

– Finally, Neha Rungta’s column on Verification features an article on safety chal-
lenges posed by unmanned aircraft systems by César A. Muñoz, Aaron Dutle, An-
thony Narkawicz, and Jason Upchurch.

– In the Conference Reports section, edited by Jorge A. Pérez, Hugo Torres Vieira re-
ports on DisCoTec 2016.

– As usual, we wrap up with the latest issue of SIGLOG Monthly, prepared by Daniela
Petrişan.

SIGLOG News is still looking for a volunteer to coordinate a section on book reviews.
Please email editor@siglog.org if you are interested.

Andrzej Murawski
University of Warwick
SIGLOG News Editor
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Chair’s Letter

Greetings and best wishes for a great summer. The Logic and Computation community
has been particularly well recognized by recent awards. First, the inaugural Church
Award was announced. The winners are Rajeev Alur and David Dill for the invention
of timed automata. This work has been enormously influential in theory and practice.
It is a staple of courses on verification and is part of many model-checking and verifi-
cation systems. The award will be presented at the ACM-IEEE Symposium on Logic in
Computer Science in New York in July. I remember meeting David Dill during ICALP
in 1990 just before he was about to present the historic paper called “Automata for
modeling real-time systems” which kicked off the subject. Of course, I had no idea I
was about to see the start of something so enormously successful.

The Gödel Prize was awarded to two old friends of mine: Peter O’Hearn and Stephen
Brookes for their work on concurrent separation logic. This issue’s column on Seman-
tics is an article by them on the genesis of this work. It is especially gratifying, as the
Gödel Prize does not often go to logic related work. I remember O’Hearn as a clever but
modest and unassuming graduate student. Steve Brookes and I were both on his PhD
defence committee when he defended his thesis at Queen’s University. It is wonderful
to see the both of them recongnized in this way.

The SIGLOG elections are over; I thank everyone who voted and I especially thank
Dale Miller for putting together a great slate of candidates. Every post was contested:
this is a great sign of the vibrancy of the community. Three of the winners are in-
cumbents: Alexandra Silva as Secretary, Luke Ong as vice-chair and myself as chair.
Amy Felty is the newly elected Treasurer. We are, of course, gratified by the support
we received and look forward to serving SIGLOG. I thank Natarajan Shankar for his
dedicated service to SIGLOG as the Treasurer so far. It is also appropriate to remind
the community that it was Shankar’s inspired presentation at the SGB meeting that
persuaded ACM to proceed with the chartering of SIGLOG.

Prakash Panangaden
McGill University
ACM SIGLOG Chair
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AUTOMATA COLUMN
MIKOŁAJ BOJAŃCZYK, University of Warsaw
bojan@mimuw.edu.pl

A (word) transducer is an automaton with output, which defines a binary relation on
words, including the important special case of a function from words to words. For the
uninitiated, the transducer landscape can be a bit confusing, since there are several
non-equivalent models (unlike for languages, where all reasonable models of finite
automata are equivalent). In this column, Emmanuel Filiot and Pierre-Alain Reynier
explain this landscape, with an emphasis on the connections with logic and algebra.
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Transducers, Logic and Algebra for Functions of Finite Words

Emmanuel Filiot Pierre-Alain Reynier

Université Libre de Bruxelles Aix-Marseille Université

The robust theory of regular languages is based on three important pillars: computation (automata), logic,
and algebra. In this paper, we survey old and recent results on extensions of these pillars to functions from
words to words. We consider two important classes of word functions, the rational and regular functions,
respectively defined by one-way and two-way automata with output words, called transducers.

1. INTRODUCTION
Important connections between computation, mathematical logic, and algebra have
been established for regular languages of finite words. The class of regular languages
corresponds to the class of languages recognized by finite automata, to the class of
languages definable in monadic second-order logic (MSO) with one successor [Büchi
1960; Elgot 1961; Trakhtenbrot 1961], and to the class of languages whose syntac-
tic monoid, a canonical monoid attached to every language, is finite (see for instance
[Straubing 1994]). While automata are well-suited to study the algorithmic properties
of regular languages, the algebraic view has provided effective characterizations of
regular languages and its subclasses. Most notably, the problem of deciding whether
a regular language is first-order definable amounts to checking whether its syntactic
monoid, which is computable from any finite automaton recognizing the language, is
aperiodic, which is decidable. See [Diekert et al. 2008] for a survey on first-order de-
finable languages, and [Straubing 1994] for generalizations to other monoid varieties
and fragments of MSO. In this paper, we want to survey some old and recent results
that extend the three main pillars of language theory to functions of finite words.

At the computational level, word functions are defined by transducers, which extend
automata with outputs on their transitions. They can be seen as Turing machines with
a read-only input tape initially filled with the input word, and a write-only output tape
on which to write the output word. We will consider two important classes of transduc-
ers: one-way and two-way transducers. For both classes, the output head is assumed to
move only to the right, and for the class of one-way transducer, the input head is also
restricted to move to the right. This yields the class of rational functions, long studied
in the literature [Berstel and Boasson 1979], and the strictly more expressive class of
regular functions, which has received more attention in the recent years.

At the logical level, we consider MSO transducers, as defined by Courcelle in the
more general context of graph transformations [Courcelle 1994]. MSO transducers are
based on MSO for words, and the main idea is to define the output word by some MSO
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Fig. 1. One-way transducers T0 and T1 realizing fdel and fsw respectively, where � 2 {a, b}.

interpretation on the input word. We present results establishing connections between
one-way and two-way transducers and classes of MSO transducers.

At the algebraic level, we present a notion of syntactic congruence for functions in-
troduced by Choffrut, which is of finite index iff the function is sequential, i.e. can be
defined by some input-deterministic one-way transducer. We also present a generaliza-
tion of this algebraic characterization to rational functions, a result due to Reutenauer
and Schützenberger. We give an application of the latter characterization to the first-
order definability problem for rational functions. For the more general class of regular
functions, no algebraic characterization is known, but we present preliminary results
towards it.

The paper is simply organized along the three pillars: transducers, logic, and alge-
bra. We conclude with some extensions of the presented results and further research
directions.

2. TRANSDUCERS
In this paper we assume ⌃ to be a finite alphabet and denote by ⌃

⇤ the set of finite
words over ⌃, and by ✏ the empty word. A transduction f is a relation on ⌃

⇤. In this
paper, we will be particularly interested in (partial) functions and for such objects, we
denote by dom(f) their domain.

Example 2.1. In this paper, we will use three running examples, the functions f
del

,
f
sw

and f
mir

, over the alphabet ⌃ = {a, b}. The function f
del

erases the letters a of an
input word: e.g. f

del

(abba) = bb. The function f
sw

puts the last symbol in a first position
(’sw’ stands for ’swap’). It is defined by f

sw

(✏) = ✏ and for all u 2 ⌃

⇤ and � 2 ⌃, by
f
sw

(u�) = �u. Finally, the function f
mir

copies an input word u and concatenates it
with its mirror image u, i.e. f

mir

(u) = uu for all u 2 ⌃

⇤. E.g. f
mir

(ab) = abba.

2.1. One-way transducers
One-way transducers are Turing machines with two left-to-right tapes. The first tape is
read-only and contains the input word while the second tape is write-only and contains
the output word. For example, to realize the function f

del

for Example 2.1 by a one-way
transducer, the machine will simply go through the input word, from left to right, and,
for each input symbol �, copy � on the output tape iff � is different from a.

Formally, a one-way transducer1 is a tuple T = (Q, I, F,�, t) where Q is a finite set of
states, I ✓ Q is a set of initial states, F ✓ Q is a set of final states, � ✓ Q⇥⌃⇥⌃

⇤ ⇥Q
is a finite set of transitions, and t : F ! ⌃

⇤ is a terminal output function. A transition
� = (p, a, w, q) 2 � of T is represented as p

a|w��! q. Intuitively it means that if the

1More generally, a transducer is defined as a finite automaton over the monoid ⌃⇤ ⇥ ⌃⇤. Our definition
corresponds to real-time transducers in the literature [Berstel and Boasson 1979]. For transductions which
are functions, real-time transducers and transducers coincide in expressiveness, therefore we just call them
transducers in this paper, as this paper is about functions.
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transducer is in state p, and the next input letter is a, then it may go to state q and
write the word w on the output tape. W.l.o.g., we assume that for all p, q 2 Q, a 2 ⌃,
there exists at most one w 2 ⌃

⇤ such that (p, a, w, q) 2 �. The class of these transducers
is denoted NFT, standing for non-deterministic finite-state transducers.

Given a word u = a1 . . . an 2 ⌃

⇤, a run of T from p to q on u is a sequence of states
⇢ = (q

i

)

i=0..n such that q0 = p, q
n

= q and, for each i 2 {1, . . . , n}, there is a transition
of the form q

i�1
ai|wi���! q

i

in �. We say that a run ⇢ = (q
i

)

i=0..n is accepting if q0 2 I and
q
n

2 F . The output of such an accepting run ⇢ on u, denoted by out

u

(⇢), is defined as
the concatenation of the words produced by the transitions and the image of state q

n

by the terminal function t, i.e. the finite word w1 . . . wn

t(q
n

) 2 ⌃

⇤.
The transduction defined (or realized) by T is the relation JT K composed of the pairs

(u,w) such that there exists an accepting run ⇢ of T on u satisfying w = out

u

(⇢).
An NFT T is functional if the transduction it defines is a function. The class of func-

tional NFT is denoted by fNFT. The class of functions realized by fNFT is called the
class of rational functions2. An NFT is sequential if the underlying input automaton,
obtained by projecting away the output words on transitions, is deterministic. Observe
that such transducers obviously recognize functions. The class of sequential NFT is
denoted by SFT. The class of functions realized by SFT is called the class of sequential
functions.

Example 2.2. We describe two examples on the alphabet ⌃ = {a, b}. The transducer
T0, depicted on the left of Figure 1, is functional, sequential, and realizes the function
f
del

. Its terminal function is constant equal to ✏, and is depicted by a target free out-
going arrow. The transducer T1, depicted on the right of Figure 1, is functional but not
sequential. It realizes the function f

sw

. Intuitively, the non-determinism is mandatory
to guess initially the last letter of the input word.

2.2. Two-way transducers
Two-way transducers extend one-way transducers as follows: instead of being left-to-
right, the input tape is two-way. As an example, this intuitively allows the transducer
to move to the end of the input word, and to copy it on the output tape during a right-
to-left traversal. This transformation thus maps every input word to its mirror image.

Formally, we will consider that two-way transducers take as input a word u 2 ⌃

⇤

surrounded by left and right end-markers, denoted by ` and a, which we suppose
do not belong to the alphabet ⌃. These end-markers allow the transducer to identify
the beginning and end of the input word. We denote by ⌃` the alphabet ⌃ [ {`,a}.
A two-way transducer is a tuple T = (Q, I, F,�) where Q, I and F are as in one-
way transducers. � is a finite set of transitions which are elements of the form
(p, a, w, q,m) 2 Q ⇥ ⌃` ⇥ ⌃

⇤ ⇥ Q ⇥ {�1,+1}. Compared with one-way transducers,
transitions contain now a component m 2 {�1,+1} which indicates the direction of
the move (left or right). We also require that transitions reading the left end-marker
always move to the right.

Note also that the definition does not include a terminal function. This function is
indeed useless for two-way transducers as it can be simulated using the right end-
marker.

The class of these transducers is denoted by 2NFT, standing for two-way non-
deterministic finite-state transducers.

A configuration of a two-way transducer T is a pair (q, i) 2 Q⇥ (N \ {0}) where q is a
state and i is a position on the input tape. Given an input word u = a1 . . . an 2 ⌃

⇤, we

2They are called rational because they can be alternatively defined by the more general and classical notion
of rational subsets of monoids, see [Berstel and Boasson 1979].
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q0 q1 q2 q3 q
f

� | �,+1 � | �,�1 � | ",+1

`| ",+1 a| ",�1 `| ",+1 a| ",+1

Fig. 2. A two-way transducer T2 for fmir .

will consider an execution of T on the input ` u a2 ⌃

⇤
`. A run of T on the input u0

=` u a
is a finite sequence of configurations ⇢ = (p1, i1) . . . (pm, i

m

) such that i1 = 0, i
m

= n+2,
and for all k 2 {1, . . . ,m� 1}, 0  i

k

 n+ 1 and 3
(p

k

, u0
[i
k

], w
k

, p
k+1, ik+1 � i

k

) 2 �, for
some word w

k

. The output of such a run ⇢ on ` u a, denoted by out

u

(⇢), is defined as the
concatenation of the words produced by the transitions, i.e. the finite word w1 . . . wm

2
⌃

⇤.
This run is accepting if p1 2 I and p

m

2 F . This means that for all the configura-
tions but the last one, the reading head should be on a letter of the input u0. For the
run to be accepting, the last configuration must correspond to the reading head being
immediately after the end of the input word (i

m

= n+ 2).
As for NFT, the transduction defined by T is the relation JT K composed of the pairs

(u,w) such that there exists an accepting run ⇢ of T on ` u a satisfying w = out

u

(⇢).
As for one-way transducers, we will be interested in the subclasses of transduc-

ers functional and sequential transducers, denoted respectively by f2NFT and 2SFT,
and defined respectively as the transducers whose semantics is a function, resp. the
transducers whose underlying input (two-way) automaton is deterministic. The class
of functions realized by f2NFT is called the class of regular functions. This terminology
comes from the equivalence with a logical formalism, so-called MSO transducers, that
will be presented in the next section.

Example 2.3. Consider the transducer T2 for f
mir

depicted on Figure 2. It maps
every input word u to uū, where ū denotes the mirror image of u. The left and right
end-markers are important here to allow the transducer to identify the beginning and
end of the input word.

2.3. Landscape of transducer classes
Figure 3 gives the inclusion relations existing between the six classes of transducers
we have defined so far. Let us first comment on these inclusions. Relations trivially
extend functions. Rational functions strictly contain sequential functions, strictness
being witnessed by the transduction f

sw

. Regular functions strictly contain rational
ones, as witnessed by f

mir

. Last, unlike for one-way transducers, in presence of two-
wayness, functional non-determinism does not increase expressive power (equality be-
tween f2NFT and 2SFT), as shown in [Engelfriet and Hoogeboom 2001]. This equiva-
lence is effective.

We also depict on this picture the decidability status of several subclasses decision
problems. For instance, we have proven in [Filiot et al. 2013] that it is decidable, given
a f2NFT, whether there exists an equivalent one-way transducer. This decidability
result is indicated on the edge from f2NFT to fNFT. Concerning this result, the overall
complexity of our decision procedure is non-elementary, and a recent work provided
a 2EXPSPACE procedure for the subclass of sweeping transducers [Baschenis et al.

3We use the following notation: u0[0] denotes symbol `, u0[i] with 1  i  n denotes the i-th letter of u, and
u0[n+ 1] denotes symbol a.
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PTIME
[Choffrut 1977]

[Weber and Klemm 1995]
[Béal et al. 2003]

PTIME
[Schützenberger 1975]
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[Béal et al. 2003]
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[Culik and Karhumaki 1987]
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[Baschenis et al. 2015]

decidable
[Filiot et al. 2013]

Fig. 3. A landscape of transducers of finite words.

2015]. Other decidability and undecidability results are depicted on the other edges in
a similar way.

2.4. Equivalence problem
Checking whether two transducers are equivalent, i.e. whether they define the same
transduction, is a natural and important problem, that has been studied by several au-
thors. Unfortunately, this problem is already undecidable for NFT, as proven in [Grif-
fiths 1968]. On the positive side, this problem is decidable for the classes of functional
transducers we have presented (it is actually sufficient decide whether two functional
transducers have the same domain, and then decide whether the disjoint union of the
two transducers is functional), which explains the interest for these classes. The de-
cidability frontier lies actually beyond functional transducers, as it encompasses the
class of so-called finite-valued transducers, defined as the transducers for which there
exists some natural number k such that, for every input word, the number of outputs
associated with this input word is at most k. This decidability result has been proven
for instance in [Culik II and Karhumäki 1986; Weber 1993; de Souza 2008] for finite-
valued one-way transducers. In [Culik II and Karhumäki 1986], the authors claim
that the equivalence problem is even decidable for the class of finite-valued two-way
transducers.

3. LOGICS
A formalism based on monadic second-order logic (MSO) has been defined by [Cour-
celle 1994] to define transformations of graph structures. In this section, we cast this
formalism to word to word functions, and refer the reader to [Courcelle and Engelfriet
2012] for more details and results about MSO transducers for general graph struc-
tures.

Words w are seen as logical structures on the domain {1, . . . , |w|} over the signature
consisting of unary predicates a(x) for each symbol of ⌃, and the binary predicate x � y
for the total order on positions. Recall that MSO on words is the extension of first-order
logic with quantification over sets of positions (see [Straubing 1994] for details). It is
well-known by Büchi’s theorem that a language is MSO-definable iff it is regular. We
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present extensions of this fundamental result to word functions defined by one-way
and two-way transducers.

3.1. MSO transducers
The definition of MSO transducers is technical and in this paper, we rather want to
define them intuitively and with examples. We refer the interested reader to [Courcelle
1994; Engelfriet and Hoogeboom 2001; Filiot 2015] for detailed definitions.

In an MSO transducer, the output word is defined as an MSO interpretation over
a fixed number k of copies of the input word. Therefore, the nodes of the output word
are copies 1 to k of the nodes of the input word. Output nodes are denoted xc, for every
copy c and input node x. For every copy c, only the nodes satisfying a given formula
�c

pos

(x) with one free first-order variable x are kept. For instance, assume one takes
two copies of the input word, and in the first copy, one keeps all nodes x1 such that x is
labeled a, and in the second copy, one keeps all nodes x2 such that x is labeled b. This
is specified by the two formulas �1

pos

(x) = a(x) and �2
pos

(x) = b(x).
The output label and order predicates are defined by MSO formulas with one and

two free first-order variables respectively, interpreted over the input structure. For
instance, over the alphabet ⌃ = {a, b}, to set all the output labels to a, one just specifies
the formulas �c

a

(x) = > and �c

b

(x) = ? for all copies c. The output order predicate
relates input nodes of possibly different copies, and is therefore defined by formulas of
the form �c,d

� (x, y) for any copies 1  c, d  k.
Finally, a closed MSO formula �

dom

defines the domain of the function. All in all, an
MSO transducer over an alphabet ⌃ is a tuple

T = (k,�
dom

, (�c

pos

(x))1ck

, (�c

a

(x))1ck,a2⌃, (�
c,d

� (x, y))1c,dk

)

The output structure may not be a word, but here we assume that an MSO transducer
T outputs only word structures. It is a decidable property. Note that the length of
output word of an input word of length M by an MSO transducer is bounded by kM ,
since one takes a fixed number k of copies of the input word.

input

word

copy 1

a b a a b b b a

1 2 3 4 5 6 7 8

a b a a b b b a
�1,1
� �1,1

� �1,1
�

(a) Transformation fdel defined by Tdel

input

word

copy 1

copy 2

a b a a b b b a

1 2 3 4 5 6 7 8

a b a a b b b a

a b a a b b b a

�1,1
� �1,1

� �1,1
� �1,1

� �1,1
� �1,1

� �1,1
�

�1,2
�

�2,2
��2,2

� �2,2
� �2,2

� �2,2
� �2,2

� �2,2
�

(b) Transformation fmir defined by Tmir

Fig. 4. Functions defined by MSO-transducers

ACM SIGLOG News 9 July 2016, Vol. 3, No. 3



3.2. Examples of MSO transducers
As a first example, an MSO transducer T

del

that realizes f
del

is illustrated in Fig. 4(a)
(only the successor relation is depicted). Input nodes filtered out by formulas �c

pos

(x)
are represented by fuzzy nodes. It is realized by the MSO transducer

T
del

=(1,�
dom

⌘ >,�1
pos

(x) ⌘ ¬a(x), (�1
�

(x) ⌘ �(x))
�2⌃,�

1,1
� (x, y) ⌘ x � y)

As a second example, consider the function f
mir

. To realize f
mir

with an MSO trans-
ducer (Fig. 4(b)), one needs two copies of an input word u. The labels are kept un-
changed, however the order is reversed for the second copy. One also sets that all nodes
of the first copy are smaller than the nodes of the second copy, as they appear before in
the output word. Therefore, f

mir

is realized by the transducer T
mir

with k = 2 and

�
dom

⌘ > �c

pos

(x) ⌘ > �c

a

(x) = a(x) �c

b

(x) = b(x)

�1,1
� (x, y) ⌘ x � y �1,2

� (x, y) ⌘ > �2,1
� (x, y) ⌘ ? �2,2

� (x, y) ⌘ y � x

for all copies c 2 {1, 2}. Note that given an input word u, the order on the output word
positions is the binary relation O = {(ic, jd) | 1  c, d  2, i, j 2 dom(u), u |= �c,d

� (i, j)}.
Only the successor relation induced by O is depicted on the figure.

3.3. Büchi theorems for word functions
Regular functions. The first automata-logic connection for word transformations has

been given by Engelfriet and Hoogeboom for the class of regular functions:

THEOREM 3.1. [Engelfriet and Hoogeboom 2001] A function f is regular iff it is
realized by some MSO transducer.

In order to prove the direction from 2SFT to MSO transducers, one builds an MSO
transducer that, given an input word u, outputs a (linear) graph that represents the
run of the 2SFT on u. The converse direction is more complex, and involves an extended
model of two-way transducers which can perform ”MSO jumps” '(x, y), where '(x, y) is
an MSO formula that defines a function from x positions to y positions. Intuitively, the
machine can move from position x to position y providing '(x, y) holds true. 2SFT with
MSO jumps are then converted, based on the Büchi theorem, into 2SFT with regular
look-around. These 2SFT can move only to positions which are in the 1- neighbourhood
of the current position, but their move can be based on a regular property of the current
prefix and suffix of the word. Finally, it is shown that 2SFT with regular look-around
are equivalent to 2SFT.

Rational functions. Using an adequate restriction of MSO transducers, one can also
prove a Büchi theorem for rational functions. Intuitively, an MSO transducer is order-
preserving if in the graphical representation of the output, there is no right-to-left
edge. For instance, considering the transformations depicted on Figure 4, the trans-
formation f

del

satisfies this property while the transformation f
mir

does not. Formally,
this property requires that for every input word u and for every c, d 2 {1, . . . , k}, if
the formula �c,d

� (x, y) evaluates to true in u, then x � y also evaluates to true. This
property is decidable.

THEOREM 3.2. [Bojanczyk 2014; Filiot 2015] A function f is rational iff it is realized
by some order-preserving MSO transducer.

The proof proceeds as follows: given a one-way transducer, the MSO transducer
that builds as output the run of the one-way transducer naturally satisfies the order-
preserving property. Conversely, the idea is to identify, for each position of the input
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word, the subword of the output that corresponds to this position. One can then repre-
sent the transduction as a regular language, and make use of Büchi theorem.

The power of transducer-logic connections is illustrated by the following definability
problem. As shown in [Filiot et al. 2013], it is decidable whether a deterministic two-
way finite state transducer T is equivalent to a one-way functional finite state trans-
ducer. As a consequence of this result and of the two previous theorems, we obtain the
following corollary:

COROLLARY 3.3. Given an MSO-transducer, it is decidable whether it is equivalent
to some order-preserving MSO-transducer.

4. ALGEBRA
Similarly to regular languages, sequential and rational functions can be character-
ized by the index finiteness of well-chosen (canonical) congruences. For the class of
regular functions, no algebraic characterizations are known but we present partial re-
sults based on algebraic properties of the transition structure of two-way transducers
(their transition monoid). For the class of regular functions with origin information,
i.e. regular functions extended with pointers from any output position to some input
position (intuitively, the input position from which they originate), an algebraic char-
acterization is known [Bojanczyk 2014]. We present origin information at the end of
this section.

We recall that a left (resp. right) congruence on ⌃

⇤ is an equivalence relation ⌘ such
that for all u, v 2 ⌃

⇤ and � 2 ⌃, if u ⌘ v then �u ⌘ �v (resp. if u ⌘ v then u� ⌘ v�). For
u 2 ⌃

⇤, we denote by [u]⌘ the class of u, or just [u] when it is clear from the context.
A congruence ⌘ (left or right) has finite-index if its quotient ⌃

⇤/⌘ has finitely many
classes.

In this section, we also denote by � the prefix relation on words, and by u ^ v the
longest common prefix of any two words u and v. Given a language L ✓ ⌃

⇤ and a word
u 2 ⌃

⇤, we denote by u�1L the residual of L by u, i.e. the set of words w such that
uw 2 L. When u � v, we denote by u�1v the unique word w such that v = uw.

4.1. Sequential functions
It is well-known that any regular language is recognized by a unique minimal com-
plete deterministic automaton. Intuitively, for a language L, any two words u, v which
behave equivalently with respect to continuations w (uw 2 L iff vw 2 L) must reach
the same state in a minimal deterministic automaton. This is captured by the right
congruence ⌘

L

: u ⌘
L

v if for all w 2 ⌃

⇤, uw 2 L iff vw 2 L. The well-known Myhill-
Nerode’s theorem states that L is regular iff ⌘

L

has finite index. Moreover, the index
of ⌘

L

is exactly the number of states of the minimal complete deterministic automaton
recognizing L.

In this section, we explain how to extend the characterization of regular languages
to sequential functions, an extension due to Choffrut [Choffrut 1979; Choffrut 2003].
In a minimal sequential transducer defining a function f : ⌃

⇤ ! ⌃

⇤, two (input) words
u, v must go to the same state if they behave the same w.r.t. dom(f) (u ⌘dom(f) v),
but also w.r.t. the outputs, in the sense that the output produced when processing a
continuation w should not depend on u and v. To capture this idea, one first defines a
canonical way of producing the output, via a total function ˆf : ⌃

⇤ ! ⌃

⇤ which, given
a word u, outputs the longest common prefix of all words f(uw) for all continuations
w 2 u�1dom(f):

ˆf(u) =
^

{f(uw) | w 2 u�1dom(f)} where
^

? is set to ✏.
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Then, one defines the relation ⌘
f

by u ⌘
f

v if the following two statements hold:

(i) u ⌘dom(f) v (ii) 8w 2 u�1dom(f), ˆf(u)�1f(uw) = ˆf(v)�1f(vw)

Note that ˆf(u)�1 is necessarily a prefix of f(uw), and similarly for ˆf(v)�1, by defi-
nition of ˆf . It turns out that ⌘

f

is a right congruence, which allows one to construct
a transducer T

f

for f (possibly with infinitely many states). The set of states of T
f

is ⌃

⇤/⌘f , with initial state [✏] and set of accepting states dom(f)/⌘f . The transitions
are ([u], a, w, [ua]) with u 2 ⌃

⇤, a 2 ⌃ and w =

ˆf(u)�1
ˆf(u�). The terminal function is

t : [u] 7! ˆf(u)�1f(u) for u 2 dom(f).
Note that if ⌘

f

has finite index, then T
f

is a proper sequential transducer with
finitely many states, and therefore f is sequential. The converse is also true, and one
gets a Myhill-Nerode theorem for sequential functions, due to Choffrut:

THEOREM 4.1. [Choffrut 2003; Choffrut 1979] A function f : ⌃

⇤ ! ⌃

⇤ is sequential
iff ⌘

f

has finite index.
Note that T

f

is canonical. Moreover when f is sequential, then T
f

is minimal, and
any sequential transducer realizing f can be uniquely mapped to T

f

, through a notion
of transducer morphism, e.g. defined in [Choffrut 2003]. In that sense, T

f

is unique.

4.2. Rational functions
In this section, we present an algebraic characterization, as well as a canonical trans-
ducer construction, for rational functions, due to Reutenauer and Schützenberger. This
characterization is based on the model of bimachines, which are essentially sequential
transducers extended with regular look-ahead. We adopt the latter view, which will
hopefully allow us to give an intuitive explanation of Reutenauer and Schützenberger’s
result. This formalization also appeared in [Boiret et al. 2012].

Rational functions with infinite syntactic congruence. Let us see why the finiteness of ⌘
f

fails at characterizing rational (but non-sequential) functions. Over ⌃ = {a, b}, con-
sider the function f

sw

of Example 2.1. The congruence ⌘dom(fsw) has only one class
⌃

⇤. The function ˆf
sw

is constant equal to ✏: for any u 2 ⌃

⇤, ˆf
sw

(u) � (f
sw

(ua) ^
f
sw

(ub)) = au ^ bu = ✏. Therefore, for all u, v 2 ⌃

⇤ and all w 2 ⌃

⇤, ˆf
sw

(u)�1f
sw

(uw) =
ˆf
sw

(u)�1
(v)f

sw

(vw) iff f
sw

(uw) = f
sw

(vw) iff u = v. Therefore, ⌘
fsw has infinite index.

Now, consider the following two restrictions on dom(f
sw

): last
a

= {ua | u 2 ⌃

⇤}
and last

b

= {ub | u 2 ⌃

⇤}, then the function f
sw

is sequential on these two restricted
domains. This suggests that modulo some information about the suffix (whether it
ends with a or b in this case), the function is sequential. Unlike the latter example, the
suffix information needed to be sequential may change along an input word. Consider
for instance the iterated version of f

sw

that we denote f⇤
sw

, which is defined over the
alphabet � = ⌃ [ {#} by:
f⇤
sw

: u1#u2# . . .#u
n

7! f
sw

(u1)#f
sw

(u2)# . . .#f
sw

(u
n

) where u
i

2 ⌃

⇤ and n � 0

To realize f⇤
sw

in a sequential way, a transducer needs to know, when reading a symbol
� 2 {a, b}, if it is the last letter of a block in {a, b}+, and otherwise whether the last
letter of this block is an a or a b. Modulo this look-ahead information, the function f⇤

sw

is sequential.
Sequentiality modulo regular look-ahead. Let us formalise the notion of sequentiality

modulo (regular) look-ahead information. A look-ahead information L is a partition
of ⌃

⇤ assumed to be the quotient of ⌃

⇤ by a left congruence of finite index, de-
noted by ⌘L. We denote by [u]L the class of a word u. The look-ahead extension is
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Fig. 5. Sequential transducer realizing f⇤
sw[L], where � 2 {a, b} and � 2 {a, b,#}.

the function eL : ⌃

⇤ ! (⌃ ⇥ L)⇤ defined for all u = �1 . . .�n

2 ⌃

⇤ by eL(u) =

(�1, [�2 . . .�n

]L)(�2, [�3 . . .�n

]L) . . . (�n

, [✏]L). A function f : ⌃

⇤ ! ⌃

⇤ is sequential mod-
ulo L (or L-sequential) if the function denoted f [L] : (⌃ ⇥ L)⇤ ! ⌃

⇤ defined on
eL(dom(f)) by f [L](eL(u)) = f(u), is sequential.

Note that a function f over an alphabet ⌃ is sequential iff it is {⌃⇤}-sequential.
As a second example, the function f⇤

sw

is L-sequential for L = {end, last

a

, last

b

} where
end = ✏+#�

⇤, and for � 2 {a, b}, last

�

= (a+ b)⇤�(✏+#�

⇤
). The function f⇤

sw

[L] is re-
alized by the sequential transducer of Fig. 5. Note that this transducer also checks
that the look-ahead annotations are correct, i.e. it ensures that the domain is ex-
actly eL(dom(f⇤

sw

)). For instance, whenever the information end is read, the transducer
moves to state q#, from which only # can be read. This ensures that the annotation by
look-ahead information end is correct. The only way to access state q

a

is when reading
the look-ahead information last

a

, and the only way to leave q
a

is when reading (a, end),
thus ensuring that the last letter of the block is indeed a. Since the transducer is se-
quential, has domain eL(dom(f⇤

sw

)), and the look-ahead annotation is unique for each
word, projecting away the look-ahead information on this transducer yields an unam-
biguous transducer realizing f⇤

sw

.

A canonical look-ahead. It is known [Elgot and Mezei 1965] that any rational function
f : ⌃

⇤ ! ⌃

⇤ equals the composition of two functions r : ⌃

⇤ ! �

⇤ and ` : �

⇤ !
⌃

⇤ for some intermediate alphabet �, i.e. f = ` � r, where ` is sequential and r is
right-sequential, i.e. the function m � r �m is sequential, where m is the function that
mirrors input words. In other words, r can be realized by a sequential transducer that
processes input words backwards and produces output words backwards. Moreover, T
can be chosen to be letter-to-letter, i.e. produce exactly one output symbol per input
symbol, and hence T is nothing else than an automaton that computes some look-
ahead information (the output symbols). We can rephrase this decomposition result in
terms of L-sequentiality:

THEOREM 4.2. [Elgot and Mezei 1965] f is rational iff it is L-sequential for some L
of finite index.

The strong result of Reutenauer and Schützenberger is precisely to show that, in the
latter proposition, L can be chosen in a canonical way, that depends only on f , denoted
L
f

. The idea is to identify suffixes u and v that have only a bounded “difference” on
the outputs f(wu) and f(wv) for all w such that wu,wv 2 dom(f). To quantify this
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effect, they use the notion of delay distance between words, defined by d(t1, t2) = |t1|+
|t2|�2|t1^t2|. In other words, this distance only counts what remains when the longest
common prefix of t1 and t2 has been cut out. Then, two words u, v are equivalent for
⌘Lf if (i) for all w 2 ⌃

⇤, wu 2 dom(f) iff wv 2 dom(f), and (ii) the set {d(f(wu), f(wv)) |
wu,wv 2 dom(f)} is finite. It turns out that ⌘Lf is a left congruence, and it is of finite
index when f is rational.

Example 4.3. As an example, consider again the function f⇤
sw

defined before. The
look-ahead given before is actually the canonical one, i.e. L

f

⇤
sw

= {end, last

a

, last

b

}.
Indeed, let �,� 2 {a, b}, u, v 2 {a, b}⇤ and u0, v0 2 end. Then, any w such that
wu�u0 2 dom(f⇤

sw

) and wv�v0 2 dom(f⇤
sw

) is of the form w1w2 where w1 2 �

⇤
#

and w2 2 ⌃

⇤. Then, {d(f⇤
sw

(w1w2u�u
0
), f⇤

sw

(w1w2v�v
0
)) | w1 2 �

⇤
#, w2 2 ⌃

⇤} =

{d(f⇤
sw

(w1)�w2uf
⇤
sw

(u0
), f⇤

sw

(w1)�w2vf
⇤
sw

(v0)) | w1 2 �

⇤
#, w2 2 ⌃

⇤}, which is finite iff
� = �. This gives the two classes last

a

and last

b

. Similarly, it is possible to check that
all words in the set end are equivalent.

We can now state Reutenauer and Schützenberger’s result:

THEOREM 4.4. [Reutenauer and Schützenberger 1991] Let f : ⌃

⇤ ! ⌃

⇤. The follow-
ing three statements are equivalent:

(1) f is rational,
(2) L

f

has finite index and f is L
f

-sequential,
(3) L

f

and ⌘
f [Lf ] have finite index.

When f is given by a transducer, a canonical sequential transducer for f [L
f

] can be
constructed effectively. Projecting its input symbols on ⌃ (i.e. discarding the look-ahead
information), one gets a canonical unambiguous transducer T

f

realizing f .

Bimachines. The latter theorem was originally presented based on the notion of bi-
machines. A bimachine is made of a right deterministic automaton R reading input
words from right to left, a deterministic automaton L, and an output function ! which
takes states of L, states of R and symbols in ⌃ as arguments, and produces a word.
The output produced at position i in a word w = �1 . . .�n

is !(l,�
i

, r) where l is the
state of L reached after processing the prefix �1 . . .�i

(if it exists), and r is the state
of R reached after reading the suffix �

i

. . .�
n

. Reutenauer and Schützenberger’s re-
sult is precisely to show that for any rational function f , there exists a canonical right
automaton R

f

, a left automaton L[R
f

] (which is canonical once the right automaton is
fixed), and an output function !, which defined a canonical bimachine for f . Translated
in the look-ahead framework, R

f

defines the look-ahead information L
f

, and by taking
the product of R

f

and L[R
f

], one obtains a sequential transducer realizing f [L
f

].

4.3. First-order definable functions
If only first-order formulas are allowed in the definition of (order-preserving) MSO-
transducers, one gets the subclass of (order-preserving) FO-transducers. A function is
(order-preserving) first-order definable if it is definable by an (order-preserving) FO-
transducer. First-order definable languages L are characterized by languages having
aperiodic syntactic congruence4 ⌘

L

, which yields a decision procedure for automata:
minimize the automaton and check the aperiodicity of its transition congruence. We
present similar results for rational functions and partial results for functions definable
by two-way transducers.

4A congruence ⌘ on ⌃⇤ is aperiodic if there exists n0 2 N such that for all u, v 2 ⌃⇤ and n � n0, un ⌘ vn iff
un+1 ⌘ vn+1.
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The transition congruence ⌘
A

of an automaton A is defined by u ⌘
A

v if for all states
p, q, it holds p

u�! q iff p v�! q. The transition congruence of a transducer is the transition
congruence of its underlying (input) automaton, and a transducer is aperiodic if its
transition congruence is aperiodic. It is known that a rational function f is order-
preserving first-order definable iff it is realized by some aperiodic transducer [Filiot
et al. 2016]. Moreover, a function f is realizable by some aperiodic transducer iff the
canonical left congruence L

f

and the right congruence ⌘
f [Lf ] are both aperiodic, which

is decidable when f is given by some transducer. Therefore, one gets the following
theorem:

THEOREM 4.5. [Lhote 2015; Filiot et al. 2016] It is decidable whether a transducer
defines an order-preserving first-order function.

The problem of deciding whether a transducer is equivalent to some aperiodic and
functional one has been generalized to arbitrary congruence varieties in [Filiot et al.
2016]. It is shown in this case that the congruences L

f

and ⌘
f [Lf ] may not be in the

varieties, even if some transducer realizing the function is, but at least one pair of
congruences L and ⌘

f [L] is in the variety, where those pairs are taken in a finite com-
putable set of congruences.

No such results are known for functions definable by deterministic two-way trans-
ducers, mainly because for such functions the existence of a canonical device is still
open. Nevertheless, the notion of transition congruence can be extended to two-way
automata and therefore to two-way transducers. Roughly, it identifies words with the
same state behaviors, where the behaviors are either left-to-right, right-to-left, left-to-
left and right-to-right. For instance, left-to-right behaviors are exactly as for classical
one-way automata, and a pair of states (p, q) if a left-to-left behavior of a word u if
there is a run that enters u from the left in state p, and leaves u to the left in state q.

THEOREM 4.6. [Carton and Dartois 2015] A function f is first-order definable iff it
is realized by some aperiodic two-way transducer.

In [Bojanczyk 2014], a transduction with origin is a function from words u to pairs
(v, o), where v is a word, and o is an origin mapping that sends any position of v to a
position of u, the position from which “it has been created”. Most transducer models,
including MSO- and FO-transducers, implicitly bear origin information. We denote by
JT K

o

the origin transduction defined by a transducer. For regular transductions with
origin, an algebraic characterization is known (see [Bojanczyk 2014]), based on which
first-order definability can be decided:

THEOREM 4.7. [Bojanczyk 2014] Given a two-way transducer T realizing a trans-
duction with origin JT K

o

, it is decidable whether there exists an FO-transducer T 0 such
that JT K

o

= JT 0K
o

.

5. EXTENSIONS AND PERSPECTIVES
Functions of finite words enjoy multiple presentations by means of transducers, logic
and algebra. We have presented some old and recent results using these different tools,
as well as some nice equivalence results. In this conclusion, we present a recent alter-
native automaton model, as well as some extensions to other structures than finite
words.

Streaming String Transducers. Recently, an alternative model of transducers has
been introduced in [Alur and Černý 2011], named streaming string transducers (SST
for short). Intuitively, it consists in a deterministic one-way automaton extended with a
finite number of registers, valued with finite words. These registers are updated along
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q
b Y q

a X q0 XY

b;
X:=Xa
Y:=Yb a;

X:=Xa
Y:=Yb

a;
X:=Xa
Y:=Yb

b;
X:=Xa
Y:=Yb

�;
X:=X�
Y:=�Y

Fig. 6. Two streaming string transducers.

transitions but never tested, and they are used to define the output of a run. Two
examples of SST are depicted on Figure 6. The left SST realizes the function mapping
any word of the form u� to �|u|, and ✏ to itself, while the right SST realizes the function
f
mir

.
Interestingly, it has been proven that a simple restriction of this model, so-called

copyless SST (updates should make a linear use of registers) exactly coincides with the
class of regular functions [Alur and Černý 2010]. Intuitively, this means that the model
allows to transfer the complexity of runs of two-way transducers to the updates of
variables. Similarly, a simple restriction of SST (called right-appending SST) coincides
with the class of rational functions, namely that in which updates are of the form X :=

Y u, where X and Y are registers, and u is a finite word. This model has been applied to
the verification of list-processing programs [Alur and Černý 2011], and implemented
[Alur et al. 2015].

Concerning first-order definable transformations, a result similar to Theorem 4.6
has been provided for streaming string transducers in [Filiot et al. 2014; Dartois et al.
2016b], using an adequate notion of transition monoid of an SST.

Another natural problem for this model is the notion of register complexity of a
function, i.e. the minimal number of registers needed to realize a regular function.
This problem has attracted a lot of attention recently. In [Daviaud et al. 2016], a so-
lution is proposed for the class of right-appending SST using a generalization of the
twinning property, a tool that has been introduced in [Choffrut 1977] to characterize
sequential functions among rational ones. In [Baschenis et al. 2016], the authors con-
sider also a register minimization problem but for the class of non-deterministic SST
where concatenations of registers are forbidden in the register updates.

Infinite words. The determinization problem, i.e. deciding whether a transducer de-
fines a sequential function, has been extended to infinite word transducers with Büchi
acceptance condition in [Béal and Carton 2002]. Correspondence between MSO and
SST on infinite strings have been shown in [Alur et al. 2012].

Trees and nested words. Tree transducers have been studied in numerous works,
in particular by Joost Engelfriet and Sebastian Maneth, and we will not give here
an exhaustive list. However, in order to echo the transducer-logic connection that we
have presented in this paper, let us mention that it has been in shown in [Engelfriet
and Maneth 2003] that MSO-definable tree transducers exactly coincide with Macro
Tree Transducers that are linear-size increase, i.e. the size of the output tree is always
linear in the size of the input tree. Let us also mention the survey [Maneth 2015] about
the equivalence problem for tree transducers.

Recently, we have also considered transducers whose inputs are tree linearizations
represented as nested words [Filiot et al. 2010]. We have defined so called visibly push-
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down transducers and have proven that several positive results of one-way transduc-
ers are preserved by this model. Recently, we have shown that MSO-definable nested
word-to-word transformations and a two-way model of visibly pushdown transducers
are equivalent [Dartois et al. 2016a].

Some perspectives. For the class of regular functions, we have seen logical and au-
tomata models. An interesting and challenging research direction is to build an alge-
braic framework for regular transductions.

On the logical side, MSO transducers can be transformed into two-way or streaming
transducers in non-elementary time. This blow-up is not avoidable, which raises the
question of having MSO expressive logics well-suited to define transductions, and that
enjoy better complexities.

Finally, an interesting direction, which generalizes the classical Church synthesis
problem, is that of sequential uniformisation. The problem is to decide whether from
a given word relation, one can extract a function such that (i) it has the same domain
as the relation, (ii) it is included in the relation, and (iii) it belongs to some class of
functions with interesting properties. The relation can be thought of as a set of good be-
haviours of a system, and the function as the behaviour of the synthesised system. The
required properties of the targeted class of functions depend on the applications. For
instance, one may target sequential functions for memory efficiency. For rational rela-
tions and the class of sequential functions, this problem is undecidable, but decidable
when restricted to finite-valued rational relations or deterministic rational relations
[Filiot et al. 2016].
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Karel Culik II and Juhani Karhumäki. 1986. The Equivalence of Finite Valued Transducers (On HDT0L
Languages) is Decidable. Theor. Comput. Sci. 47, 3 (1986), 71–84.

Luc Dartois, Emmanuel Filiot, Pierre-Alain Reynier, and Jean-Marc Talbot. 2016a. Two-Way Visibly Push-
down Automata and Transducers. In Proc. 31st Annual IEEE Symposium on Logic in Computer Science
(LICS’16). IEEE Computer Society. To appear.
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Hilbert’s Nullstellensatz says roughly that there does not exist a solution of the
polynomial equations f1(x) = f2(x) = · · · = fm(x) = 0 iff there does exist a linear
combination of these polynomials, g1(x)f1(x)+· · ·+gm(x)fm(x) that is identically equal
to 1. I first heard the idea of using this in a proof system, in a talk by Toniann Pitassi
at a 1996 DIMACS workshop that Phokion Kolaitis and I organized. Pitassi and Iddo
Tzameret have now given us a clear explanation of dramatic progress in this area
along with rich interconnections with deep work in algebraic complexity.
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We survey recent progress in the proof complexity of strong proof systems and its connection to algebraic
circuit complexity, showing how the synergy between the two gives rise to new approaches to fundamental
open questions, solutions to old problems, and new directions of research. In particular, we focus on tight
connections between proof complexity lower bounds (namely, lower bounds on the size of proofs of certain
tautologies), algebraic circuit lower bounds, and the Polynomial Identity Testing problem from derandom-
ization theory.

1. INTRODUCTION

Propositional proof complexity aims to understand and analyze the computational resources
required to prove propositional tautologies, in the same way that circuit complexity studies
the resources required to compute boolean functions. A central question in the area asks
whether every boolean tautology has a short propositional proof. Here, a propositional proof
system can take many forms. One such proof system is the resolution refutation system
whose proof-search algorithm constitutes the basis of current state of the art industrial-
level SAT solvers (this thread of research was recently covered in SigLog; see Nordström
[Nordström 2015]). For resolution and its weak extensions, strong lower bounds are known
since Haken [Haken 1985]. But the major open questions in proof complexity, those origi-
nating from boolean circuit complexity and complexity class separations, such as P vs. NP,
are about the length of much stronger proof systems than resolution, and these stronger
systems will be the focus of this survey.

The prototypical strong proof system is the standard Hilbert-style propositional proof
system, called Frege proof system, in which a proof starts from a fixed finite set of axioms
and derives new propositional formulas using a fixed set of sound derivation rules. Estab-
lishing any super-polynomial size lower bound on such proofs (in terms of the size of the
formula proved) is a major open problem in proof complexity, and a fundamental question
in complexity theory.

The seminal work of Cook and Reckhow [Cook and Reckhow 1979] showed that in its
strongest form, proof-size lower bound questions relate directly to fundamental hardness
questions in computational complexity: establishing super-polynomial lower bounds for ev-
ery propositional proof system would separate NP from coNP (and thus also P from NP).

The aim of this survey is to outline a currently thriving research direction, connecting
algebraic circuit complexity to proof complexity. The prominent goal of this approach is the
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quest for lower bounds on strong proof systems; other important aspects are connections
to derandomization theory and application to feasible mathematics. The survey is meant
to give some basic background in propositional proof complexity and describe the algebraic
approach to proof complexity.

In what follows, Section 2 gives the basic definitions of algebraic circuits, propositional
proof systems and algebraic proof systems, and a quick survey of the background results.
Section 3 is devoted to the Ideal Proof System (IPS). In this section we show that IPS
is closely connected to the Extended Frege proof system, and show that superpolynomial
lower bounds for IPS proofs imply algebraic circuit lower bounds. Section 4 is devoted to
the study of the non-commutative IPS. In this section we show that non-commutative IPS is
equivalent (up to quasi-polynomial factors) to the Frege system and discuss the ramifications
of this equivalence. Section 5 is dedicated to lower bounds for restricted subsystems of IPS.
Section 6 discusses connections between algebraic proof complexity and the polynomial
identity testing (PIT) problem and the use of structural results on algebraic circuits in
proof complexity, as well as application to feasible mathematics. Finally we conclude with
a discussion and open problems in Section 7.

2. BASIC CONCEPTS

For a natural number we let [n] = {1, . . . , n}. Let F be a field. Denote by F[x1, . . . , xn]
the ring of (commutative) polynomials with coefficients from F and variables x1, . . . , xn. In
this survey, unless otherwise stated, we treat polynomials as formal linear combination of
monomials, where a monomial is a product of variables. Hence, when we talk about the zero
polynomial we mean the polynomial in which the coefficients of all monomials are zero (it
can happen that over, say, GF (2), x2 + x computes the zero function, but it is not the zero
polynomial, because it has two nonzero monomial coefficients). Similarly, two polynomials
are said to be identical if they have precisely the same monomial coefficients. The degree of
a polynomial (or total degree) is the maximal sum of variable powers in a monomial with a
nonzero coefficient in the polynomial. If the power of each variable in every monomial is at
most 1 we say that the polynomial is multilinear. We write poly(n) to denote a polynomial
growth in n, namely a function that is upper bounded by nO(1), and qpoly(n) to denote a

quasi-polynomial growth in n, that is, nlogO(1)n.

2.1. Propositional Proof Systems

Cook and Reckhow [Cook and Reckhow 1979] defined a general concept of a propositional
proof system from the perspective of computational complexity theory: a propositional proof
system is a polynomial-time function f from a set of finite strings over some given alphabet
onto the set of propositional tautologies (reasonably encoded). Thus, f(x) = y means that
the string x is a proof of the tautology y. Note that since f is onto, all tautologies and only
tautologies have proofs (and thus the proof system is complete and sound).

The idea behind the Cook-Reckhow definition is that a purported proof x may be much
longer than the tautology y it proves, but given a proof it should be possible to efficiently
check (efficient with respect to the proof length, but not necessarily the tautology size) that
it is indeed a correct proof of the tautology. We say that a propositional proof system is
polynomially bounded if there exists a polynomial p that bounds the minimal proof size
|x| for every tautology y; namely, for every tautology y its minimal proof x is such that
|x| ≤ poly(|y|). Under the general Cook-Reckhow definition we have:

Theorem 2.1 (Cook-Reckhow [Cook and Reckhow 1979]). NP=coNP if and
only if there is a polynomially bounded propositional proof system.
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Therefore, proving lower bounds against stronger and stronger propositional proof sys-
tems is clearly a formidable problem, as it can be considered as partial progress towards
proving NP̸=coNP (and thus P̸=NP).

The definition of a propositional Cook-Reckhow proof system encompasses most standard
proof systems for propositional tautologies, such as resolution and usual textbook proof
system for propositional logic. In this survey we discuss specific propositional proof systems,
that are at least as strong as the Frege or the Extended Frege system (see below). Though
proving lower bounds on (Extended) Frege proof sizes for some families of tautologies would
not amount to NP̸=coNP, it would still constitute a breakthrough in complexity theory.

2.1.1. Frege Proof Systems. One of the most investigated and central propositional proof
systems comes from the tradition of logic and is called the Frege proof system. A Frege proof
system is any system that has a fixed number of axiom schemes and sound derivation rules,
that is also implicationally complete1, and in which proof lines are written as propositional
formulas. It is known since Reckhow’s work [Reckhow 1976] that all Frege proof systems are
polynomially equivalent to each other, and hence it does not matter precisely which rules,
axioms, and logical-connectives we use in the system. For concreteness, the reader can think
of the Frege proof system as the following simple one (known as Schoenfield’s system),
consisting of only three axiom schemes (where A → B is an abbreviation of ¬A ∨ B; and
A, B, C are any propositional formulas):

A → (B → A)

(¬A → ¬B) → ((¬A → B) → A)

(A → (B → C)) → ((A → B) → (A → C)),

and a single inference rule (known as modus ponens):

from A and A → B, infer B .

Frege systems are considered strong for several reasons. First, no super-polynomial lower
bounds are known for Frege proofs, and moreover proving such lower bounds seems to be
out of reach of current techniques, and believed by some to be even harder than proving
explicit circuit lower bounds [Razborov 2015]. Secondly, hard candidates for Frege systems
are hard to find; common tautologies such as the pigeonhole principle that are known to be
hard for weaker proof systems have polynomial-size Frege proofs. (See [Bonet et al. 1995;
Razborov 2015; Kraj́ıček 2011; Li and Tzameret 2013] for further discussions on hard proof
complexity candidates.)

An Extended Frege proof system is obtained by augmenting Frege with the axiom:

Extension Axiom: z ↔ ϕ ,

where z is any new variable (namely, a variable that does not occur before in the proof)
and ϕ is any formula (that does not contain z), and where the new variables z appearing
in the extension axiom does not occur in the final formula in the proof. The point of the
extension axiom is to allow the use of new variables to represent intermediate subformulas
in a proof; with this new axiom scheme, polynomial-size Extended Frege proofs can reason
about propositions computable by polynomial-size circuits (rather than just propositions
computable by polynomial-size formulas, as is the case for polynomial-size Frege proofs).

For comprehensive texts on proof complexity and strong proof systems see e.g., the mono-
graph by Kraj́ıček [Kraj́ıček 1995] and [Clote and Kranakis 2002, Chapter 5].

1Meaning that if a set of formulas Γ logically implies a formula ϕ, then there is a proof of ϕ in the system
with formulas in Γ added to the axioms.
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2.2. Comparing Proof Systems

To compare the relative strength of two proof systems we define the notion of a simulation.
We say that a propositional proof system P polynomially simulates another propositional
proof system Q if there is a polynomial-time computable function f that maps Q-proofs to
P -proofs of the same tautologies (if P and Q use different representations for tautologies, we
fix a (polynomial) translation from one representation to the other). In case f is computable
in time t(n) (for n the input-size), we say that P t(n)-simulates Q. We say that P and Q are
polynomially equivalent in case P polynomially simulates Q and Q polynomially simulates
P . If P polynomially simulates Q but Q does not polynomially simulate P we say that P
is strictly stronger than Q (equivalently, that Q is strictly weaker than P ).

2.3. Algebraic Circuits, Formulas, and Algebraic Complexity Classes

Algebraic circuits and formulas (over some fixed chosen field or ring) compute polynomials
via addition and multiplication gates, starting from the input variables and constants from
the field. More precisely, an algebraic circuit F is a finite directed acyclic graph with input
nodes (i.e., nodes of in-degree zero) and a single output node (i.e., a node of out-degree zero).
Input nodes are labeled with either a variable or a field element in F. All the other nodes
have in-degree two (unless otherwise stated) and are labeled by either + or ×. An input
node is said to compute the variable or scalar that labels itself. A + (or ×) gate is said to
compute the addition (product, resp.) of the polynomials computed by its incoming nodes.
An algebraic circuit is called a formula, if the underlying directed acyclic graph is a tree
(that is, every node has at most one outgoing edge). The size of a circuit is the number of
nodes in it, and the depth of a circuit is the length of the longest directed path in it.

Algebraic Complexity Classes. We now recall some basic notions from algebraic com-
plexity (for more details see [Shpilka and Yehudayoff 2010, Sec. 1.2]). Over a ring R, VPR

(for “Valiant’s P”) is the class of families f = (fn)∞
n=1 of formal polynomials fn such that fn

has poly(n) input variables, is of poly(n) degree, and can be computed by algebraic circuits
over R of poly(n) size. VNPR (for “Valiant’s NP”) is the class of families g of polynomials
gn such that gn has poly(n) input variables and is of poly(n) degree, and can be written as

gn(x1, . . . , xpoly(n)) =
∑

e∈{0,1}poly(n)

fn(e, x)

for some family (fn) ∈ VPR.
A polynomial f(x) is a projection of a polynomial g(y) if f(x) = g(L(x)) identically as

polynomials in x, for some map L that assigns to each yi either a variable or a constant. A
family of polynomials (fn) is a polynomial projection or p-projection of another family (gn)
if there is a function t(n) = nΘ(1) such that fn is a projection of gt(n) for all (sufficiently
large) n. The permanent polynomial

∑

σ∈Sn

∏n
i=1 xi,σ(i) (for Sn the permutation group on

n elements) is complete under p-projections for VNP. The determinant polynomial on the
other hand is known to be in VP but is not known to be complete for VP under p-projections.

Two central questions in algebraic complexity theory are whether the permanent is a
p-projection of the determinant (a stronger variant speaks about quasi-polynomial projec-
tions); and whether VP equals VNP [Valiant 1979a; Valiant 1979b; Valiant 1982]. Since the
permanent is complete for VNP (under p-projections), showing VP ̸=VNP amounts to proving
that the permanent cannot be computed by polynomial-size algebraic circuits.

2.4. Algebraic Proof Systems

Let us now describe several algebraic proof systems for propositional logic (i.e. for boolean
tautologies). Assume we start from a set of initial polynomials (called axioms) f1, . . . , fm ∈
F[x1, . . . , xn] over some field F, then (the weak version of) Hilbert’s Nullstellensatz shows
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that f1(x) = · · · = fm(x) = 0 is unsatisfiable (over the algebraic closure of F) if and only if
there are polynomials g1, . . . , gm ∈ F[x] such that

∑

j gj(x)fj(x) = 1 (as a formal identity),
or equivalently, that 1 is in the ideal generated by the {fj}j .

Beame, Impagliazzo, Kraj́ıček, Pitassi, and Pudlák [Beame et al. 1996] suggested to treat
these {gj}j as a proof of the unsatisfiability of these axioms, called a Nullstellensatz
refutation. This is particularly relevant for complexity theory as one can restrict attention
to boolean solutions to these axioms by adding the boolean axioms, that is, adding the
polynomials {x2

i −xi}n
i=1 to the axioms. As such, one can then naturally encode NP-complete

problems such as the satisfiability of 3CNF formulas as the satisfiability of a collection of
constant-degree polynomials, and a Nullstellensatz refutation is then an equation of the
form

m
∑

j=1

gj(x)fj(x) +
n

∑

i=1

hi(x)(x2
i − xi) = 1

for gj, hi ∈ F[x]. This proof system is sound (only refuting unsatisfiable axioms over {0, 1}n)
and complete (refuting any unsatisfiable axioms, by Hilbert’s Nullstellensatz). Given that
the above proof system is sound and complete, it is then natural to ask what is its power
to refute unsatisfiable collections of polynomial equations over {0, 1}n. To understand this
question one must define the notion of the size of the above refutations. Two popular notions
are that of the degree, and the sparsity (number of monomials).

Strong (linear) lower bounds on Nullstellensatz degrees as well as strong (exponential)
lower bounds on the sparsity of Nullstellensatz refutations are known (cf. [Beame et al. 1996;
Buss et al. 1996; Razborov 1998; Grigoriev 1998; Impagliazzo et al. 1999; Buss et al. 2001;
Alekhnovich and Razborov 2001] and references therein). Unfortunately, the hard examples
used for these lower bounds do admit polynomial-size proofs in stronger proof systems like
Frege.

Therefore, to correspond more accurately to Frege, strong algebraic proof systems must
use a more economical representation of polynomials in proofs than sum of monomials
(similarly to the way a boolean formula is a much more succinct representation of a boolean
function than a mere CNF). The natural way is to measure the size of a polynomial by the
size of the minimal algebraic circuit or formula that computes it.

The idea to consider algebraic circuit size of algebraic proofs was raised initially by
Pitassi [Pitassi 1997] for Nullstellensatz written as algebraic circuits, and was investigated
further in [Grigoriev and Hirsch 2003; Raz and Tzameret 2008b; Raz and Tzameret 2008a;
Tzameret 2011] in the context of the polynomial calculus proof system.

Recently, Grochow and Pitassi [Grochow and Pitassi 2014] have suggested the following
algebraic proof system that resembles the Nullstellensatz, but with a variant that proved
to have important consequences. A proof in the Ideal Proof System is given as a single
polynomial, lending itself quite directly to algebraic circuit complexity techniques. In what
follows we follow the notation in [Forbes et al. 2016b]:

Definition 2.2 (Ideal Proof System (IPS), Grochow-Pitassi [Grochow and Pitassi 2014]).
Let f1(x), . . . , fm(x) ∈ F[x1, . . . , xn] be a collection of polynomials. An IPS refutation

for showing that the polynomials {fj}j have no common solution in {0, 1}n is an algebraic
circuit C(x, y, z) ∈ F[x, y1, . . . , ym, z1, . . . , zn], such that

(1) C(x, 0, 0) = 0.
(2) C(x, f1(x), . . . , fm(x), x2

1 − x1, . . . , x2
n − xn) = 1.

The size of the IPS refutation is the size of the circuit C. If C is of individual degree
≤ 1 in each yj and zi, then this is a linear IPS refutation (called basically Hilbert IPS by
Grochow-Pitassi [Grochow and Pitassi 2014]), which is abbreviated as IPSLIN. If C comes
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from a restricted class of algebraic circuits C, then this is called a C-IPS refutation, and
further called a C-IPSLIN refutation if C is linear in y, z. The variables y, z are sometimes
called the placeholder variables since they use as a placeholder for the axioms.

Notice that the definition above adds the equations {x2
i − xi}i to the system {fj}j. It is

not necessary (for the sake of completeness) to add the equations x2 − x to the system in
general, but this is the most interesting regime for proof complexity and thus we adopt it as
part of our definition. Also, note that the first equality in the definition of IPS means that
the polynomial computed by C is in the ideal generated by y, z, which in turn, following
the second equality, means that C witnesses the fact that 1 is in the ideal generated by
f1(x), . . . , fm(x), x2

1 − x1, . . . , x2
n − xn (the existence of this witness, for unsatisfiable set of

polynomials, stems from the Nullstellensatz theorem as discussed above).
It is not hard to show that IPSLIN is polynomially equivalent to the Nullstellensatz system,

when both are measured by their circuit size. For if we have an IPSLIN refutation C(x, y, z)
we can turn it into a Nullstellensatz refutation by writing it as a sum of products of the
(linear) variables y, z, with only a quadratic increase in size. For instance, if we write z′ to
denote z without zn, we have C(x, y, z) = C(x, y, z′, zn) = C(x, y, z′, 0) + (C(x, y, z′, 1) −
C(x, y, z′, 0)) · zn. Now, since C(x, y, z′, 0) does not contain the variable zn we can continue
in a similar way to “take out” the rest of the variables in y, z, one by one, reaching a
Nullstellensatz refutation (when substituting the fi’s and the boolean axioms for the y, z,
respectively).

Furthermore, Forbes, Shpilka, Tzameret and Wigderson [Forbes et al. 2016b] showed that
IPSLIN refutations written as (general) algebraic circuits is polynomially equivalent to IPS
(though for restricted classes C, C-IPS may differ from C-IPSLIN).

Considering both the Nullstellensatz and the IPS we can see that the main innovation in
the IPS is the introduction of the placeholder variables y, z. This idea enables considering
a refutation as a single polynomial instead of considering a collection of polynomials (that
is, those polynomial coefficients of the initial axioms, as is the case of the Nullstellensatz).

Grochow-Pitassi [Grochow and Pitassi 2014] showed that the IPS system is very powerful
and can simulate Extended Frege (this follows from the fact that IPS is a generalization of
the Nullstellensatz written as algebraic circuits and already [Pitassi 1997] showed that the
latter system simulates Extended Frege).

The fact that C-IPS refutations are efficiently checkable (with randomness) follows from
the fact that we only need to verify the polynomial identities stipulated by the definition.
That is, it suffices to solve an instance of the polynomial identity testing (PIT) problem
for the class C: given a circuit from the class C decide whether it computes the identically
zero polynomial. This problem is solvable in probabilistic polynomial time (BPP) for general
algebraic circuits, and there are various restricted classes for which deterministic algorithms
are known (see Section 6).

The Polynomial Calculus. The Polynomial Calculus is an algebraic proof system in-
troduced by [Clegg et al. 1996]. It can be considered as a “dynamic” version of the Nullstel-
lensatz; namely, instead of providing a single certificate that 1 is in the ideal of the initial
(unsatisfiable) polynomials, in PC we are allowed to derive the polynomial 1 step by step,
by working in the ideal generated by the initial polynomials.

Definition 2.3 (Polynomial Calculus (PC)). Let F be a field and let F =
{f1, . . . , fm} be a collection of multivariate polynomials from F[x1, . . . , xn]. A PC proof
from Q of a polynomial g is a finite sequence π = (p1, . . . , pℓ) of multivariate polynomials
from F[x1, . . . , xn], where pℓ = g and for every 1 ≤ i ≤ ℓ, either pi = fj for some j ∈ [m],
or pi is a boolean axiom xi · (1 − xi) for some i ∈ [n], or pi was derived from pj, pk , for
j, k < i, by one of the following inference rules:
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(i) Product rule: from p, derive xi · p, for i ∈ [n];
(ii) Addition rule: from p, q, derive ap + bq, for a, b ∈ F.

A PC refutation of F is a proof of 1 (which is interpreted as 1 = 0, that is the unsatisfiable
equation standing for false) from F .

Similar to the Nullstellensatz, the standard complexity measures for PC are the degree of
a PC proof, which is the maximal (total) degree of a polynomial in the proof and the size
of a PC proof which is the total number of monomials (with nonzero coefficients) in all the
PC proof lines. However, it is also possible to consider the total algebraic circuit size of all
the PC proofs lines as a complexity measure.

Non-commutative Algebraic Proof Systems. Motivated by the fact that the class
of non-commutative formulas admits a deterministic PIT algorithm by Raz and Shpilka
[Raz and Shpilka 2005a], and even more importantly admits exponential-size lower bounds
by Nisan [Nisan 1991], Li, Tzameret and Wang [Li et al. 2015] considered a variant of the
IPS over non-commutative polynomials written as non-commutative formulas. Their non-
commutative IPS was shown to constitute a tighter characterization of Frege proofs than
the original (commutative) IPS: first, proofs in this system are checkable in deterministic
polynomial-time; and second, Frege can simulate (with a quasi-polynomial increase in size)
non-commutative IPS refutations (over the field of two elements). But perhaps most impor-
tantly, the fact that we do have lower bounds on non-commutative formulas together with
the characterization of any Frege proof as a single non-commutative formula, gives some
hope to progress on the problem of Frege lower bounds. We discuss the non-commutative
IPS in more details in Section 4.

3. IPS

In this section we show that lower bounds for IPS imply algebraic circuit lower bounds,
namely that the permanent does not have polynomial-size algebraic circuits. This implica-
tion is interesting because it is a unique case in proof complexity where a lower bound on a
specific proof system (on any tautology) is shown to imply explicit circuit lower bounds. We
then compare the strength of IPS to Extended Frege. We show that IPS, in its full generality
polynomially simulates Extended Frege, and on the other hand, show that Extended Frege
polynomially simulates IPS if PIT has feasible correctness proofs in Extended Frege.2

3.1. Lower Bounds on IPS Imply Algebraic Circuit Lower Bounds

Theorem 3.1 (Grochow-Pitassi [Grochow and Pitassi 2014]). For any ring R,
a super-polynomial lower bound on IPS proofs over R of any family of tautologies implies
VNPR ̸= VPR. A super-polynomial lower bound on the number of proof-lines in polynomial
calculus proofs implies that the permanent is not a p-projection of the determinant.

We will sketch the proof for the first half of the theorem which gives the main idea. The
proof of the second half can be found in [Grochow and Pitassi 2014].

Lemma 3.2. Every family of unsatisfiable CNF formulas (ϕn) has a family of IPS
certificates (Cn) in VNPR.

Proof of Theorem 3.1, assuming Lemma 3.2. Our proof is taken from
[Grochow and Pitassi 2014]. For a given set F of unsatisfiable polynomial equations
F1 = · · · = Fm = 0, a lower bound on IPS refutations of F is equivalent to giving the
same circuit lower bound on all IPS certificates for F . A super-polynomial lower bound

2Namely, that Extended Frege has polynomial-size proofs of the statement expressing that the PIT for
algebraic circuits is decidable by polynomial-size Boolean circuits.
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on IPS implies that some function in VNP—namely, the VNP-IPS certificate guaranteed
by Lemma 3.2—cannot be computed by polynomial-size algebraic circuits, and hence that
VNP ̸= VP.

Proof sketch of Lemma 3.2. We mimic one of the proofs of completeness for linear IPS
[Pitassi 1997, Theorem 1] and then show that this proof can in fact be carried out in VNP.
We omit any mention of the ground ring, as it will not be relevant.

Let ϕn(x) = κ1(x) ∧ · · · ∧ κm(x) be an unsatisfiable CNF formula, where each κi is
a disjunction of literals. Let Ci(x) denote the (negated) polynomial translation of κi via
¬x #→ x, x #→ 1−x and f ∨g #→ fg; in particular, Ci(x) = 0 if and only if κi(x) = 1, and thus
ϕn is unsatisfiable if and only if the system of equations C1(x) = · · · = Cm(x) = x2

1 − x1 =
· · · = x2

n − xn = 0 is unsatisfiable. In fact, as we will see in the course of the proof, we will
not need the equations x2

i − xi = 0. It will be convenient to introduce the function b(e, x) =
ex + (1 − e)(1 − x), i.e., b(1, x) = x and b(0, x) = 1 − x. For example, the clause κi(x) =
(x1 ∨¬x17 ∨x42) gets translated into Ci(x) = (1−x1)x17(1−x42) = b(0, x1)b(1, x17)b(0, x42),
and therefore an assignment falsifies κi if and only if (x1, x17, x42) #→ (0, 1, 0).

Just as 1 = x1x2 + x1(1 − x2) + (1 − x2)x1 + (1 − x2)(1 − x1), an easy induction shows
that

1 =
∑

e∈{0,1}n

n
∏

i=1

b(ei, xi). (1)

We will show how to turn this expression into a VNP certificate refuting ϕn. Let ci be the
placeholder variable corresponding to Ci(x).

The idea is to partition the assignments {0, 1}n into m parts A1, . . . , Am, where all
assignments in the i-th part Ai falsify clause i. This will then allow us to rewrite equation
(1) as

1 =
m

∑

i=1

Ci(x)

⎛

⎝

∑

e∈Ai

∏

j:xj /∈κi

b(ej , xj)

⎞

⎠ , (2)

where “xj /∈ κi” means that neither xj nor its negation appears in κi. Equation (2) then
becomes the IPS-certificate

∑m
i=1 ci · (

∑

e∈Ai

∏

j:xj /∈κi
b(ej, xj)). What remains is to show

that the sum can indeed be rewritten this way, and that there is some partition (A1, . . . , Am)
as above such that the resulting certificate is in fact in VNP.

First, let us see why such a partition allows us to rewrite (1) as (2). The key fact here
is that the clause polynomial Ci(x) divides the term te(x) :=

∏n
i=1 b(ei, xi) if and only if

Ci(e) = 1, if and only if e falsifies κi. Let Ci(x) =
∏

i∈I b(fi, xi), where I ⊆ [n] is the set
of indices of the variables appearing in clause i. By the properties of b discussed above,
1 = Ci(e) =

∏

i∈I b(fi, ei) if and only if b(fi, ei) = 1 for all i ∈ I, if and only if fi = ei

for all i ∈ I. In other words, if 1 = Ci(e) then Ci =
∏

i∈I b(ei, xi), which clearly divides te.
Conversely, suppose Ci(x) divides te(x). Since te(e) = 1 and every factor of te only takes
on boolean values on boolean inputs, it follows that every factor of te evaluates to 1 at e,
in particular Ci(e) = 1.

Let A1, . . . , Am be a partition of {0, 1}n such that every assignment in Ai falsifies κi.
Since Ci divides every term te such that e falsifies clause i, Ci divides every term te with
e ∈ Ai, and thus we can indeed rewrite (1) as (2).

Next, we show how to construct a partition A1, . . . , Am as above so that the resulting
certificate is in VNP. The partition we will use is a greedy one. A1 will consist of all
assignments that falsify κ1. A2 will consist of all remaining assignments that falsify κ2. And
so on. In particular, Ai consists of all assignments that falsify κi and satisfy all Aj with
j < i. (If at some clause κi before we reach the end, we have used up all the assignments—
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which happens if and only if the first i clauses on their own are unsatisfiable—that’s okay:
nothing we’ve done so far nor anything we do below assumes that all Ai are nonempty.)

Equivalently, Ai = {e ∈ {0, 1}n|Ci(e) = 1 and Cj(e) = 0 for all j < i}. For any property
Π, we write !Π(e)" for the indicator function of Π: !Π(e)" = 1 if and only if Π(e) holds, and
0 otherwise. We thus get the certificate:

m
∑

i=1

ci ·

⎛

⎝

∑

e∈{0,1}n

!e falsifies κi and satisfies κj for all j < i"
∏

j:xj /∈κi

b(ej, xj)

⎞

⎠

=
m

∑

i=1

ci ·

⎛

⎝

∑

e∈{0,1}n

!Ci(e) = 1 and Cj(e) = 0 for all j < i"
∏

j:xj /∈κi

b(ej , xj)

⎞

⎠

=
m

∑

i=1

ci ·

⎛

⎝

∑

e∈{0,1}n

⎛

⎝Ci(e)
∏

j<i

(1 − Cj(e))

⎞

⎠

∏

j:xj /∈κi

b(ej , xj)

⎞

⎠

=
∑

e∈{0,1}n

m
∑

i=1

ciCi(e)

⎛

⎝

∏

j<i

(1 − Cj(e))

⎞

⎠

⎛

⎝

∏

j:xj /∈κi

b(ej , xj)

⎞

⎠

Finally, it is readily visible that the polynomial function of c, e, and x that is the summand
of the outermost sum

∑

e∈{0,1}n is computed by a polynomial-size circuit of polynomial
degree, and thus the entire certificate is in VNP.

3.2. IPS Polynomially Simulates Extended Frege

In this section we show that IPS polynomially simulates Extended Frege. For simplicity, we
exemplify this simulation by showing how IPS written as algebraic formulas polynomially
simulates the Frege proof system, but the proof for Extended Frege is quite similar. It was
further shown by [Grochow and Pitassi 2014] that restricted subsystems of IPS can polyno-
mially simulate the corresponding restricted subsystem of Extended Frege, and specifically
this holds for IPS written as constant-depth algebraic circuits and constant-depth Frege
systems with modulo counting gates (AC

0[p]-Frege).

Theorem 3.3 (Grochow-Pitassi [Grochow and Pitassi 2014]). Let ϕ be a 3CNF
formula. If there is an Extended Frege proof (Frege proof) that ϕ is unsatisfiable in size-s,
then there is an IPS refutation of circuit (formula, resp.) size poly(|ϕ|, s).

Proof sketch. One way of thinking of this simulation (and similar simulations of propositional
systems by IPS-variants) is to consider a two-step conversion of propositional proofs into
IPS refutations as follows. First, turn the Frege proof into a tree-like Frege proof and convert
each proof-line in the tree-like Frege proof into an equivalent algebraic formula, obtaining
a tree-like PC proof. Secondly, convert the tree-like PC proof into a single formula, whose
underlying formula-tree is precisely the underlying tree of the PC proof.

Note that a Frege proof can be converted into a tree-like proof with only a polynomial
increase in size, that is, a proof in which every proof-line can be used at most once in
modus ponens (cf. [Kraj́ıček 1995]). Therefore, we start from a tree-like Frege proof of a
propositional formula (possibly from assumptions), and show how to obtain from this an
IPS proof of the arithmetic version (see below) of the same formula. Thus, a Frege proof of
false from a given CNF ϕ is translated into an IPS proof of 1 from the initial (arithmetic
version of) ϕ, yielding an IPS refutation of ϕ.

Step 1: This step involves the arithmetization of Frege proofs, namely, converting each
Frege proof-line to an algebraic formula. Note that every Frege proof-line (e.g, in the Schoen-
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field’s system) is a boolean tautological formula. The transformation converts a boolean
tautology into a corresponding algebraic formula (over the rationals, or Fq, for a prime q;
the simulation uses only the fact that the field has 1, 0 and −1) that evaluates to 0 for all
0-1 assignments. This is done in the same way as in the proof of Lemma 3.2: true becomes 0,
false becomes 1, a variable xi becomes 1−xi, ¬A becomes 1−tr(A), where tr(A) denotes the
translation of A, A ∨ B becomes the product of the corresponding translations tr(A) · tr(B),
and A ∧ B becomes 1 − (1 − tr(A)) · (1 − tr(B)) (Schoenfield’s system uses the → logical
connective, but we can simply treat A → B as an abbreviation of ¬A ∨ B). It is easy to
check that indeed A is a tautology iff tr(A) = 0 for every 0-1 assignment.

Once we converted every Frege proof-line into its corresponding algebraic formula, we get
something that resembles a sequential algebraic proof, namely a PC proof. However, it is not
precisely a legitimate PC proof because, e.g., every application of modus ponens (from A
and A → B derive B) is translated into the purported rule “from tr(A) and (1−tr(A))·tr(B)
derive tr(B)”, which is not a formal rule in PC. Nevertheless, we can make this arithmetized
Frege proof into a legitimate PC proof, except that our PC proof will have a generalized
product rule: instead of being able to multiply a proof-line only by a single variable we
will enable a product by a polynomial, namely, from f derive g · f , for some polynomial
g ∈ F[x1, . . . , xn].

To form our (generalized) PC proof we simply simulate Schoenfield’s system rules and
axioms. Considering the example above, we need to construct a short PC proof of tr(B)
from tr(A) and (1 − tr(A)) · tr(B): first derive tr(A) · tr(B) by the generalized PC product
rule and then add this to (1 − tr(A)) · tr(B), to obtain tr(B). Similarly, Frege axioms are
translated into algebraic formulas, that we then need to derive in PC, and this is possible
to do efficiently.

Step 2 : Here we transform the (generalized) PC proof from step 1, whose underlying proof-
graph is a tree (since we assumed without loss of generality that our initial Frege proof is
a tree-like proof), into a single formula whose underlying graph is essentially the same tree.
This formula constitutes the IPS proof of the arithmetic translation of ϕ. The transformation
from a PC proof to a formula is quite straightforward. For example, assume that in the
PC proof we derived g · f from f . And suppose that we already built the IPS proof of f ,
namely C(x, f1(x), . . . , fm(x), x2

1 −x1, . . . , x2
n −xn) = f . Then, g ·C(x, f1(x), . . . , fm(x), x2

1 −
x1, . . . , x2

n −xn) = g ·f is the IPS proof of g ·f . Simulating the addition rule of PC is done in
a similar manner. (Formally, the fi(x)’s should be substituted by the placeholder variables
y, and the boolean axioms by the placeholder variables z.)

It is easy to see that the resulted IPS is of size polynomial in the size of the PC proof,
which in turn is of size polynomial in the size of the original Frege proof.

3.3. PIT as a Bridge Between Circuit Complexity and Proof Complexity

In this section we sketch the argument that Extended Frege (EF) is polynomially equivalent
to IPS if there are polynomial-size circuits for PIT whose correctness—suitably formulated—
can be efficiently proved in EF. More precisely, we identify a small set of natural axioms for
PIT and show that if these axioms can be proven efficiently in EF, then EF is p-equivalent
to IPS.

The high-level idea is to formalize soundness of IPS as a sequence of propositional state-
ments and then to show:

(1) if EF has efficient proofs of IPS soundness then EF can polynomially simulate IPS;
(2) Show that EF has efficient proofs of IPS soundness if a small set of natural axioms for

PIT are efficiently provable in EF.

The idea behind (1) is not new and traces back to Hilbert; its counterpart for propositional
proof systems was first formalized by Cook [Cook 1975]. We explain the idea for proposi-
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tional refutation systems here. Soundness of a propositional proof system states that any
formula that has a proof (in the system) is a tautology. Formalizing soundness proposition-
ally involves studying partial soundness, where we have a different propositional formula for
each proof length. In more detail, for a propositional proof system Q, SoundnessQ,n, n > 0
will be a family of propositional statements. The underlying variables of SoundnessQ,n are
x, y and z, where we think of x as an encoding of some Q-proof of length n, y as an encoding
of a k-DNF formula with n′ ≤ n underlying variables, and z as a boolean assignment to the
n′ underlying variables. SoundnessQ,n(x, y, z) is of the form P roofQ,n(x, y) → T ruth(y, z)
where P roofQ,n(x, y) expresses that x is an encoding of a Q-proof of the formula encoded
by y, and T ruth(y, z) expresses that z satisfies the formula encoded by y (i.e., the formula
encoded by y is a tautology).

For sufficiently strong propositional proof systems P and Q, it is well-known that P
polynomially simulates Q if and only if there are polynomial-sized P -proofs of SoundnessQ,n

for all n > 0. The intuitive argument is as follows: Suppose that Q has a short proof of some
formula g; let α(g) be the encoding of g, and let β(g) be the encoding of the short Q-proof
of g. Then since P has short proofs of SoundnessQ,n, we instantiate this with g to give
a short P -proof of SoundnessQ,n(β(g), α(g), z). Since P roofQ,n(β(g), α(g)) is a tautology
and involves no propositional variables, it has a short P -proof and thus by modus ponens,
there is a short P -proof of T ruth(α(g), z). The last step is to demonstrate short P -proofs
of T ruth(α(g), z) → g.

We will take P to be EF and Q to be IPS. Then EF can polynomially simulate Q if and
only if EF can efficiently prove the soundness tautologies for IPS. Proving the soundness
tautologies for IPS amounts to stating and proving (in Extended Frege) that if C is an
algebraic circuit such that: (1) C(x, 0, 0) = 0 and (2) C(x, f1(x), . . . , fm(x)) = 1, then
f1, . . . , fm is unsatisfiable. In order to state (1) and (2) efficiently, we need polynomial-sized
circuits for polynomial identity testing. Then in order to prove that (1) and (2) imply that
f1, . . . , fm is unsatisfiable, we will need to use basic properties of our PIT circuits. We omit
the proof here, but will informally state the axioms that will be required in order to carry
out the above plan.

3.4. Axioms for Circuits for Polynomial Identity Testing

Fix some standard boolean encoding of algebraic circuits, so that the encoding of any size-
m algebraic circuit has size poly(m). We use “[C]” to denote the encoding of the algebraic
circuit C. Let K = (Km,n) denote a family of boolean circuits for solving polynomial
identity testing. That is, Km,n is a boolean function that takes as input the encoding of a
size m algebraic circuit, C, over variables x1, . . . , xn, and if C has polynomial degree, then
K outputs 1 if and only if the polynomial computed by C is the 0 polynomial.

The first axiom states that if C is a circuit over variables x computing the identically 0
polynomial, then the circuit C where we plug in a particular boolean input p, still computes
the identically 0 polynomial:

K([C(x)]) → K([C(p)]).

The second axiom states that if C is a circuit over variables x computing the zero polynomial,
then the circuit 1 − C does not compute the zero polynomial:

K([C(x)]) → ¬K([1 − C(x)]).

The third axiom states that if the polynomial computed by circuit G is 0, then G can be
substituted for the constant 0:

K([G(x)]) ∧ K([C(x, 0)]) → K([C(x, G(x))]).

Finally, the last axiom states that PIT is closed under permutations of the variables. More
specifically if C(x) is identically 0, then so is C(π(x)) for all permutations π:
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Note that the issue is not the existence of small circuits for PIT since we would be happy
with nonuniform polynomial-size PIT circuits, which do exist. Unfortunately the known
constructions are highly nonuniform—they involve picking random points—and we do not
see how to prove the above axioms for these constructions. On the other hand, it is widely
conjectured that there exist uniform polynomial-sized circuits for PIT, and it is therefore a
very intriguing question whether or not the proofs of correctness of such uniform algorithms
(assuming that they exist) can be carried out in a feasible (polynomial-time) proof system.

4. THE NON-COMMUTATIVE IPS

In this section we discuss the non-commutative IPS, introduced by Li, Tzameret and Wang
[Li et al. 2015], which is a variant of the IPS over non-commutative polynomials. The main
result is that the non-commutative IPS completely captures (up to quasi-polynomial factors)
the Frege proof system when the non-commutative IPS refutations are written as non-
commutative formulas.

Since the class of non-commutative formulas are well understood, namely, it admits
exponential-size lower bounds by Nisan [Nisan 1991], and deterministic PIT algorithm by
Raz-Shpilka [Raz and Shpilka 2005a], this characterization of a Frege proof by a single non-
commutative formula gives some hope for better understanding of specific Frege proofs and
specifically for the eventual possibility of providing lower bounds on Frege proofs.

We need to describe first the basic setup before giving the precise definition. A non-
commutative polynomial is a polynomial in which products are non-commuting, namely,
xixj is not the same polynomial as xjxi, whenever i ̸= j. In other words, xixj − xjxi is not
the zero polynomial. Thus, we can treat a non-commutative polynomial as a formal sum
of non-commutative monomials. We denote by F⟨x1, . . . , xn⟩ the ring of non-commutative
polynomials over the variables x1, . . . , xn. A non-commutative formula is the same
as a (commutative) algebraic formula only that the children of product gates have order,
so that we can record the order of multiplication. Therefore, the polynomial that a non-
commutative formula computes is the polynomial achieved by first multiplying out brackets
whereby we get a sum of monomials in which the order of multiplication matters (without
performing still any cancelations of monomials), and then performing monomial cancelation
(and grouping) only when two monomials have the same variables with the same powers
and the same order of multiplication.

It helps to think of non-commutative polynomials (and formulas) as a means to compute
functions over non-commutative domains such as matrix algebras (in which matrix product
is non-commuting in general).

Definition 4.1 (Non-commutative IPS, Li-Tzameret-Wang [Li et al. 2015]). Let F be
a field. Let f1(x), . . . , fm(x) ∈ F⟨x⟩ be a system of non-commutative poly-
nomials. A non-commutative-IPS refutation that the polynomials {fj}j have
no common solution in {0, 1}n,3 is a non-commutative formula F(x, y, z, w) ∈
F⟨x, y1, . . . , ym, z1, . . . , zn, w1, . . . , w(n

2)⟩, such that

(1) F(x, 0, 0, 0) = 0.
(2) F(x, f1(x), . . . , fm(x), x2 − x, x1x2 − x2x1, . . . , xn−1xn − xnxn−1) = 1.

The x2 − x denotes the boolean axioms x2
i − xi, for all i ∈ [n], and xixj − xjxi, for all i <

j ∈ [n], are called the commutator axioms. The size of a non-commutative IPS refutation
is the minimal size of a non-commutative formula computing the non-commutative-IPS
refutation.

3One can check that the fi(x)’s have no common 0-1 solutions in F iff they do not have a common 0-1
solution in every F-algebra.
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The novelty in the non-commutative IPS in comparison to the original (commutative) IPS
is simply that a single refutation is a non-commutative polynomial instead of a commutative
one.

One way of thinking about a non-commutative IPS refutation is as a commutative IPS for-
mula augmented with additional proofs for demonstrating that all the monomials computed
along the way in this formula are indeed commuting. More precisely, consider a commutative
IPS refutation written as a formula F (x, y, z), such that F (x, f1(x), . . . , fm(x), x2 − x) = 1
as a commutative formula but F (x, f1(x), . . . , fm(x), x2 − x) ̸= 1 as a non-commutative
formula. In the commutative version of F (x, f1(x), . . . , fm(x), x2 − x), two monomials com-
puted by this refutation, say x1x2x3 and x2x1x3, will be considered the same monomial.
However, in the non-commutative version these two monomials are considered distinct, so
we need to add an explicit proof that x1x2x3 is equal to x2x1x3—in this case the proof
added is simply (x1x2 − x2x1) · x3 which is a right product of a commutator axiom.

Note that to achieve the completeness of the system we must add the commutator axioms.
Indeed, the non-commutative polynomial 1 + xixj − xjxi, for example, is unsatisfiable over
0-1 solutions, but it cannot be proven unsatisfiable without using the commutator axioms,
because it is satisfiable over some non-commutative matrix algebra (so by soundness of the
non-commutative IPS there cannot be a proof of its unsatisfiability).

The gist of Li-Tzameret-Wang’s simulation of Frege by the non-commutative IPS is that
even when we add the commutator axioms, and by that (informally speaking) force each
refutation to explicitly witness any cancelation between (commuting) monomials, we are
still not weakening the system too much, namely, we still keep the system as strong as the
Frege system. And the reason for this is that in Frege we consider propositional formulas as
purely syntactic terms. For example, if F [z] is a propositional formula, then F [(A ∧ B)/z]
and F [(B∧A)/z] (which are the results of substituting A∧B and B∧A for z in F , resp.) are
two different formulas and the tautology F [(A ∧ B)/z] ≡ F [(B ∧ A)/z] requires an explicit
Frege proof.

Li et al. showed that non-commutative IPS characterizes Frege proofs: non-commutative
IPS polynomially simulates Frege, and conversely, Frege quasi-polynomially simulates non-
commutative IPS over GF (2) (for the latter see next section):

Theorem 4.2 (Li-Tzameret-Wang [Li et al. 2015]). Let ϕ be an unsatisfiable
propositional formula. If Frege can prove that ϕ is unsatisfiable in size-s, then there is
a non-commutative IPS refutation of formula size poly(|ϕ|, s) computing a polynomial of
degree poly(|ϕ|, s). Further, this refutation is checkable in deterministic poly(|ϕ|, s) time.

The idea to consider non-commutative formulas in algebraic proofs as well as adding the
commutator axioms was considered first by Tzameret [Tzameret 2011], though in that work
the proof system was built on the polynomial calculus and not the IPS, and therefore did
not obtain the characterization of a Frege proof as a single non-commutative formula.

Let us sketch the proof of 4.2. We begin with the simulation of Frege by non-commutative
IPS. The idea here is quite similar to the simulation of Frege by (formula) IPS (Theorem
3.3).

Non-commutative IPS polynomially simulates Frege (proof sketch). Let us consider, as in
the proof of Theorem 3.3, a two-step simulation of Frege by non-commutative IPS. We
start from a Frege proof, that we assume without loss of generality is a tree-like proof, of a
tautology ϕ.

Step 1 : Here we convert each proof-line into an algebraic formula in the same way we
did in the proof of Theorem 3.3, using the same translation function tr(·), only now let
tr(·) return a non-commutative formula. So, for instance, assuming A and B are unequal,
tr(A∨B) = tr(A)·tr(B) ̸= tr(B)·tr(A) = tr(B∨A) (note that any algebraic formula can rep-
resent either a commutative or a non-commutative polynomial; namely, a non-commutative
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formula computes a non-commutative polynomial by taking into account the order in which
children of product gates appear in the formula).

Now, as before, we get a purported proof of tr(ϕ) that only resembles a PC proof and
in addition the polynomials are non-commutative. We wish to complement this purported
proof into a legitimate algebraic proof operating with non-commutative polynomials; this
will be in fact the non-commutative PC system defined by Tzameret [Tzameret 2011]: it is
similar to the PC proof system, only that polynomials are considered as non-commutative
polynomials, the addition rule is the same as in PC, and the generalized product rule can
be applied either from the right or from the left, namely, from f derive either g · f or f · g,
for some g; further, in addition to the boolean axioms, we add the commutator axioms
xixi − xjxi, for every pair of variables, to the system. The commutator axioms are crucial
for completeness (over 0-1 assignments).

We consider the case of simulating the first axiom of Schoenfield’s system A → (B → A)
in this non-commutative PC system. This will exemplify why we need to use the commutator
axioms. Thus, consider the translation of this axiom under tr(·). Recall that → is just an
abbreviation. Then, tr(A → (B → A)) = tr(¬A∨(¬B∨A)) = (1−tr(A))·((1−tr(B))·tr(A)).
Our goal is to construct a non-commutative PC proof of the following non-commutative
polynomial:

(1 − tr(A)) · ((1 − tr(B)) · tr(A)) . (3)

For this purpose, we first derive the polynomial tr(A) − tr(A)2 = (1 − tr(A)) · tr(A). This
is doable efficiently using only the boolean axioms xi − x2

i (by induction on the size of A).
Then, we wish to derive (3) from (1−tr(A))·tr(A). We can multiply the latter by (1−tr(B))
from the right, to get (1 − tr(A)) · tr(A) · (1 − tr(B)). Now we must use the commutator
axioms xixj − xjxi to commute the rightmost product in order to derive (3).

Indeed, given the product of two formulas f · g, it is possible to show by induction on
the size of f, g, that using the commutator axioms one can derive with a size |f + g| non-
commutative PC proof the formula g · f .

Step 2 : Here we repeat almost precisely the same idea as in Step 2 of the proof of The-
orem 3.3. We have a tree-like non-commutative PC proof of tr(ϕ) (that possibly uses the
commutator axioms) and we wish to turn it into a non-commutative formula that consti-
tutes an IPS proof of tr(ϕ). We do this by constructing a non-commutative formula whose
underlying graph is the same underlying proof-graph, as we did before.

4.1. Frege Quasi-Polynomially Simulates the Non-Commutative IPS

Theorem 4.3 (Li-Tzameret-Wang [Li et al. 2015]). Let ϕ be an unsatisfiable
CNF formula and f1, . . . , fm be the non-commutative formulas corresponding to its clauses
via tr(·). If there is a non-commutative IPS refutation of size s of f1, . . . , fm over GF (2),
then there is a Frege proof of size sO(log s) of the tautology ¬ϕ.

For low-degree non-commutative IPS refutations, the proof of Theorem 4.3 achieves in
fact a slightly stronger simulation than stated. Specifically, when the degree of the non-
commutative IPS refutation is logarithmic in s, the Frege proof is of polynomial-size in s
(see [Li et al. 2015] for details).

The higher-level argument is a short Frege proof of the correctness of the Raz-Shpilka
[Raz and Shpilka 2005a] deterministic PIT algorithm. This resembles the discussion in Sec-
tion 3.3 about PIT for (commutative) circuits. Indeed, the argument can be viewed as a
realization—for the non-commutative case—of Grochow-Pitassi [Grochow and Pitassi 2014]
PIT-axioms framework (Section 3.4). The actual proof of Theorem 4.3 is rather technical
and long because one needs to prove properties of the Raz-Shpilka PIT algorithm for non-
commutative formulas within the restrictive framework of propositional logic (that is, Frege
proofs). Let us sketch the main ideas in the proof.
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Our goal is to prove ¬ϕ in Frege, given a non-commutative IPS refutation π of ϕ.
The proof uses the following main five steps. First, we balance the non-commutative
IPS π, so that its depth is logarithmic in its size. This follows Hrubeš and Wigderson’s
[Hrubeš and Wigderson 2014] construction. Second, consider the balanced π, which is a
non-commutative polynomial identity over GF (2), as a boolean tautology, by replacing plus
gates with XORs and product gates with ANDs. Third, we use the so-called reflection
principle to reduce the task of efficiently proving ¬ϕ in Frege to the following task: show
that any non-commutative formula identity over GF (2), considered as a boolean tautology,
has a short Frege proof (this part was discussed—for the commutative case—in Section
3.3). Fourth, for technical reasons we turn our non-commutative polynomial identities over
GF (2) (considered as boolean tautological formulas) into a sum of homogenous identities.
This is the only step that is responsible for the quasi-polynomial size increase in Theorem
4.3. For this step we use an efficient Frege simulation of a result by Raz [Raz 2013] who
showed how to transform an arithmetic formula into (a sum of) homogenous formulas in an
efficient manner.

The fifth and final step is to actually construct short Frege proofs for homogenous non-
commutative identities. To this end we construct an efficient Frege proof of the correctness
of the Raz-Shpilka PIT algorithm for non-commutative formulas [Raz and Shpilka 2005b].

In conclusion, the fact that IPS written as a non-commutative formula (with the addi-
tional commutator axioms) characterizes Frege proofs, naturally motivates studying C-IPS
for various restricted classes C of algebraic circuits. Lower bounds for such proofs intuitively
correspond to lower bounds for restrictions of the Extended Frege proof system. This is the
content of the next section, using the recent lower bounds of Forbes, Shpilka, Tzameret and
Wigderson [Forbes et al. 2016b].

5. LOWER BOUNDS ON FRAGMENTS OF IPS

In Section 3.1 we have seen that proving super-polynomial lower bounds on the size of
IPS certificates (written as algebraic circuits) would imply a separation of VP from VNP.
On the other hand, in Section 4 we have seen that already proving lower bounds on IPS
certificates when they are written as non-commutative formulas and augmented with the
commutator axioms would imply Frege lower bounds. It is then natural to attempt to obtain
lower bounds on IPS refutations where the certificates are written as an algebraic circuit
from a restricted circuit class C. Recall the notation C-IPS from Definition 2.2, denoting
that the IPS certificate C(x, y, z) is taken from the class C.4 If the “placeholder” variables
y, z in C are linear we call the certificate a C-IPSLIN certificate. Super-polynomial lower
bounds on the size of C-IPSLIN refutations were recently shown by Forbes, Shpilka, Tzameret
and Wigderson [Forbes et al. 2016b] when C is the class of read once (oblivious) algebraic
branching programs (roABPs), multilinear formulas and diagonal circuits. We now survey
some of these lower bounds.

Let us describe the main strategy behind the proofs, which is new, and exemplifies the po-
tential of the algebraic complexity-based approach in proof complexity. One feature of these
proof-size lower bounds is that they stem almost directly from circuit-size lower bounds.

Assume that f(x) = 0 has no 0-1 solutions over some field F, and let

g(x) · f(x) +
n

∑

i=1

hi(x) · (x2
i − xi) = 1 , (4)

be the Nullstellensatz (equivalently, IPSLIN) refutation of f(x) = 0. We are going to lower
bound the size of circuits computing g(x). If we restrict our attention in (4) to only 0-1

4Note that there is a slight technical difference between requiring that C(x, y, z) is taken from C and requiring
that C(x, F (x), x2

1
− x1, . . . , x2

n − xn) is taken from C. In C-IPS we require the former.
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assignments, then the boolean axioms vanish, and we have

g(x) · f(x) = 1 , for x ∈ {0, 1}n, (5)

where (5) is now a functional identity (in contrast to a formal identity between polynomials).
That is, we consider g(x) · f(x) as a function from {0, 1}n to F, and conclude that this is
the constant 1 function. Hence

g(x) =
1

f(x)
, for x ∈ {0, 1}n .

Therefore, to lower bound the algebraic circuit size of Nullstellensatz refutations of f(x)
it suffices to lower bound the algebraic circuit size of every polynomial that computes
the function 1/f(x) over 0-1 assignments. Since we wish to prove a lower bound for a
family of polynomials computing a certain function over 0-1, instead of a lower bound for a
specific formal polynomial, this kind of lower bound is called a functional lower bound (see
also [Grigoriev and Razborov 2000; Forbes et al. 2016a]). Forbes et al. [Forbes et al. 2016b]
showed that for f(x) being a variant of the subset-sum principle

∑n
i=1 αixi − m, for αi ∈ F

and m ̸∈ {
∑n

i=1 αixi : x ∈ {0, 1}n}, one can obtain strong functional lower bounds on the
algebraic circuit size of 1/f(x), for certain circuit classes, and thus conclude IPS refutations
lower bounds for these circuit classes.

The lower bounds obtained in [Forbes et al. 2016b], stated below, are for IPS over multi-
linear formulas and read once (oblivious) algebraic branching programs (roABP). A multi-
linear formula is simply an algebraic formula (Section 2.3) in which every node computes a
multilinear polynomial. For the definition or roABPs and the proof of the lower bounds we
refer the reader to [Forbes et al. 2016b].

Theorem 5.1 (Forbes-Shpilka-Tzameret-Wigderson [Forbes et al. 2016b]).
Let n ≥ 1 and F be a field with characteristic bigger than

(2n
n

)

. Suppose that
f(x, z) =

∑

i<j∈[2n] zi,jxixj − m is a polynomial over F that has no 0-1 roots. Then,
any C-IPSLIN refutation of f(x, z) requires:
(1 ) nΩ(log n)-size when C is the class of multilinear formulas;

(2 ) 2nΩ(1)
-size when C is the class of constant-depth multilinear formulas; and

(3 ) 2Ω(n)-size when C is the class of roABPs (in every variable order).

6. PIT AND PROOF COMPLEXITY

We already discussed the polynomial identity testing (PIT) problem in the context of both
IPS and the non-commutative IPS. There, we were interested in the following question:

Can propositional proofs efficiently prove the correctness of a PIT algorithm for
a given circuit class?

We have seen in Section 3.4 that the PIT axioms capture the statements that express the
correctness of a PIT algorithm (formally, a circuit for PIT). In other words, providing
short Extended Frege proofs for the PIT axioms would de facto mean that Extended Frege
efficiently proves the correctness of (some) polynomial-size circuits for PIT; from which
it follows that Extended Frege polynomially simulates IPS. Subsequently, in Section 4.3,
we showed that Frege does admit efficient (quasi-polynomial) proofs of the correctness of
the Raz-Shpilka deterministic PIT algorithm for non-commutative formulas. This, in turn,
implies that Frege quasi-polynomially simulates the non-commutative IPS (over GF (2)).

6.1. Proof Systems for Polynomial Identities

Hrubeš and Tzameret [Hrubeš and Tzameret 2009] asked the following question concerning
the connection between proof complexity and the PIT problem:

ACM SIGLOG News 36 July 2016, Vol. 3, No. 3



Can we efficiently prove polynomial identities? And specifically, is there a sequen-
tial proof system admitting polynomial-size proofs for all polynomial identities?

In other words, this question asks whether the PIT problem admits short proofs, and specif-
ically, whether there is a simple sequential proof system to witness that PIT has short
proofs.

We know that an efficient probabilistic algorithm for PIT exists, due to Schwartz and
Zippel [Schwartz 1980; Zippel 1979]: when the field is sufficiently large, with high probabil-
ity, two different polynomials will differ on a randomly chosen field assignment. However,
whether the PIT problem is in P, namely is solvable in deterministic polynomial-time, is
of course a major open problem in complexity and derandomization theory. In fact, it is
not even known whether there are sub-exponential-size witnesses that two algebraic for-
mulas compute the same polynomial; namely, whether there is a non-deterministic sub-
exponential-time algorithm for PIT, and in yet other words, whether PIT is in NP (note
that PIT is known to be in coRP⊆coNP).

Hrubeš-Tzameret’s work [Hrubeš and Tzameret 2009] investigated the PIT∈?NP question
from the proof-complexity perspective: assuming that PIT does posses short witnesses, is it
the case that a proof system using only symbolic manipulation (resembling a Frege proof)
is enough to provide these short witnesses? And if not, can we prove lower bounds on such
proofs? Such lower bounds would at least delineate the methods that will work for efficiently
proving polynomial identities and those that will not.

The work in [Hrubeš and Tzameret 2009], as well as the subsequent work
[Hrubeš and Tzameret 2012], set out to define the analogs of Frege and Extended
Frege for the PIT problem that we shall call PI proofs (for Polynomial Identity Proofs;
originally these systems were called arithmetic proofs): just as Frege and Extended Frege
prove boolean tautologies by deriving new tautological formulas (and circuits, resp.), PI
proofs prove polynomial identities by deriving new identities between algebraic formulas
(and circuits, resp.).

Let us first describe the analog of Frege for PIT, namely the PI proof operating with
algebraic formulas, denoted simply Pf (where f stands for “formulas”). Pf is a sequential
proof system whose axioms are the polynomial-ring axioms and whose derivation rules
express the properties of the equality symbol. Each proof-line in the system is an equation
between two algebraic formulas (or circuits; see below) F, G computing polynomials over a
given field F written as F = G. The proof system is sound and complete for true polynomial
identities:

Theorem 6.1 ([Hrubeš and Tzameret 2009]). Let F be a field. For any pair F, G of
algebraic formulas, there is a PI proof in the system Pf of F = G iff F and G compute the
same polynomial.

The specific description of the rules and axioms of the PI proof system Pf are quite natural.
The inference rules of Pf are (with F, G, H formulas; where an equation below a line can
be inferred from the one above the line):

F = G

G = F

F = G G = H

F = H

F1 = G1 F2 = G2

F1 ◦ F2 = G1 ◦ G2
for ◦ ∈ {+, ·} .

And the axioms of Pc express reflexivity of equality (F = F ), commutativity and associativ-
ity of addition and product (F ◦ G = G ◦ F , and F ◦ (G ◦ H) = (F ◦ G) ◦ H, for ◦ ∈ {+, ·}),
distributivity (F · (G + H) = F · G + F · H), zero element (F + 0 = F , F · 0 = 0), unit
element (F · 1 = F ) and true identities in the field (a ◦ b = c, for ◦ ∈ {+, ·}).

A PI proof Pf is thus a sequence of equations F1 = G1, F2 = G2, . . . , Fk = Gk, with
Fi, Gi formulas, such that every equation is either an axiom or was obtained from previous
equations by one of the inference rules. The size of a proof is the total size of all formulas
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appearing in the proof. It is easy to see that, just like a Frege proof, a PI proof can be
verified for correctness in polynomial-time (assuming the field has efficient representation;
e.g., the field of rational numbers).

It is important to notice the distinction between PI proofs and propositional proofs: PI
proofs prove polynomial identities (a language in coRP) while propositional proofs prove
boolean tautologies (a language in coNP). See more on this in Section 6.1 below.

The analog of Extended Frege for PIT, denoted Pc, is identical to Pf , except that it
operates with equations between algebraic circuits instead of algebraic formulas (similar
to Jeřabek’s Circuit Frege [Jeřábek 2004], formally, one needs to add another rule to such
a system to be able to symbolically manipulate circuits, namely to merge two separate
but identical sub-circuits into a single sub-circuit; see [Hrubeš and Tzameret 2012] for the
details.)

It turns out that PI proofs are in fact very strong. First, [Hrubeš and Tzameret 2009]
only demonstrated lower bounds on very restricted fragments of PI proofs, and apparently
it is quite hard to go beyond these restricted fragments of PI proof systems (assuming
any nontrivial lower bound even exists). Furthermore, PI proofs were found to admit short
proofs for many non-trivial polynomial identities (like identities based on symmetric poly-
nomials). Moreover, PI proofs are able to “simulate” PIT algorithms for restricted alge-
braic circuit classes; specifically, Dvir and Shpilka’s PIT algorithm for restricted depth-3
algebraic circuits [Dvir and Shpilka 2006]. But more importantly, PI proofs were shown in
[Hrubeš and Tzameret 2012] to efficiently simulate many of the classical structural results
on algebraic circuits.

In particular, PI proofs Pc operating with equations between algebraic circuits, efficiently
simulate the following constructions: (i) homogenization of algebraic circuits (implicit in
[Strassen 1973]); (ii) Strassen’s technique for eliminating division gates over large enough
fields (also in [Strassen 1973]); (iii) eliminating division gates over small fields—this is done
by simulating large fields in small ones; and (iv) balancing algebraic circuits (Valiant et
al. [Valiant et al. 1983]; see also [Hyafil 1979]). Most notably, the latter result gives a strong
depth reduction for polynomial-size Pc proofs to polynomial-size O(log2 n)-depth Pc proofs
(for proving identities of a polynomial “syntactic degrees”) and a quasi-polynomial simula-
tion of Pc by Pf . This is one important point where the PI proof systems differ from Frege
and extended Frege, for which no non-trivial such simulation is known.

Since depth reduction is the most important of these results, let us state this more for-
mally:

Theorem 6.2 (Depth reduction for PI proofs [Hrubeš and Tzameret 2012]).
Assume that F, G are circuits of (syntactic) degree ≤ d and depth ≤ t. If F = G has a Pc

proof of size s then it has a Pc proof of size poly(s, d) and depth O(t + log s · log d + log2 d).

Intuitively, one can think of this theorem as showing that VNC
2-PI proofs are equal

in strength to VP-PI proofs, similar to the strong depth collapse manifested for algebraic
circuits by Valiant et al. [Valiant et al. 1983] who showed that VNC

2 = VP (where VNC2 is
defined similar to VP except that the depth of the circuits computing fn is required to be
O(log2 n)).

As we now discuss, this also had implications for understanding propositional proofs.

Algebraic Fragments of Propositional Proofs. Recall the Frege proof system de-
scribed in Section 2.1. Each Frege proof-line is a propositional tautological formula, which
is either a (substitution instance of an) axiom or was derived by the modus ponens rule. As
mentioned before, Reckhow [Reckhow 1976] proved that it does not matter which derivation
rules and axioms we use, nor even the specific logical connectives (gates) used: as long as
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we use a finite number of rules and axioms5 and the rules and axioms are (implicationally)
complete, every two Frege systems are polynomially equivalent.

Now, consider the PI proof system Pf , and assume the underlying field is GF (2). In this
case, every PI proof-line becomes a boolean tautology, where “+” becomes the logical gate
XOR, “·” becomes AND and “=” becomes the logical equivalence gate ≡ (indeed, note
that over GF (2) the axioms become propositional tautologies). This then means that PI
proofs over GF (2) are by themselves propositional Frege proofs. The converse, on the other
hand, is not true: not all Frege proofs are arithmetic proofs over GF (2), because PI proofs
over GF (2) are not complete for the set of tautologies. For instance, x2

i + xi = 0 is, over
GF (2) the boolean tautology (xi ∧ xi) ⊕ xi ≡ false over GF (2), but it is not a true identity
between (formal) polynomials and thus cannot be proved by a PI proof. In fact, Frege
system is equivalent to the PI-system Pf over GF (2) augmented with the boolean axioms
x2

i + xi; and similarly for Extended Frege and Pc over GF (2).
Considering PI proofs as the “algebraic fragment” of propositional proofs gives us a new

understanding of propositional proofs, and should hopefully shed more light on the com-
plexity of Frege proofs. As mentioned above, it shows for instance a strong depth collapse,
namely, that additional depth (beyond O(log2 n)) does not help to decrease the complexity
of proofs. It is specifically useful for upper bounds questions on propositional proofs: if we
can efficiently prove an algebraic identity over GF (2) with a PI proof we can do the same
for propositional proofs. This observation was used in [Hrubeš and Tzameret 2012] to give
a polynomial-size and depth-O(log2 n) Extended Frege proof of the determinant identities
Det(A) · Det(B) = Det(AB) and other linear-algebraic statements such as the matrix in-
verse principle AB = In → BA = In. By, essentially, unwinding depth-O(log2 n) circuits
into quasi-polynomial-size formulas, one can obtain quasi-polynomial-size Frege proofs of
the same statements. These results give presumably tight upper bounds for the proof com-
plexity of linear algebra, because, for example, Bonet, Buss and Pitassi conjectured that
Frege does not admit polynomial-size proofs of these identities [Bonet et al. 1995].

7. CONCLUSION AND OPEN PROBLEMS

In this survey we demonstrated the emerging algebraic complexity approach to proof com-
plexity. It is natural to expect that this close interaction between algebraic and proof com-
plexity will continue to contribute new insights to the fundamental open problems in proof
complexity. Already now very interesting and sometimes surprising new ideas came out
from this interaction. In particular, we have seen that proof complexity lower bounds (for
IPS restricted subsystems) are drawn almost directly from algebraic circuit lower bounds;
new connections between computation and proofs, showing that some proof complexity
lower bounds (IPS) imply computational lower bounds and complexity class separations
(VP ̸=VNP); and conversely, proving that certain lower bounds on weak computational mod-
els (non-commutative formulas) would imply strong Frege lower bounds; characterizing the
“algebraic fragments” of Frege and Extended Frege systems and using structural properties
of algebraic circuits yield a better understanding of the power of these systems through
(apparently) tight short proofs for basic statements in linear algebra. All of these results
have been achieved using methods from algebraic complexity.

The big challenge ahead is of course to find out whether the algebraic approach can
eventually lead to lower bounds on Frege and Extended Frege, or conversely help to at least
establish a formal (unconditional) so-called ‘barrier’ against proving such lower bounds (e.g.,
by showing that Extended Frege lower bounds imply strong explicit circuit lower bounds).
But before this seemingly formidable challenge, there are many important intermediate

5The number of axioms and rules is finite, but they obviously induce infinite many substitution instances
of axioms and rules, since the axioms and rules are closed under substitution of the variables in the axioms
and rules by formulas
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problems which seem relatively feasible at the moment, and whose solution will advance
the frontiers of our understanding. We end by listing some of these problems.

— Can we obtain size lower bounds on constant-depth Frege with modular gates proofs
(AC0[p]-Frege proofs)? This problem has been open for decades, despite the known
AC0[p]-circuits lower bounds. It is quite conceivable that algebraic techniques may be of
help on this.

— Can we establish size lower bounds on C-IPS (linear or not) refutations for natural encod-
ings of CNFs, for restricted circuit classes C? The lower bounds from [Forbes et al. 2016b]
hold only for a single hard axiom, and not CNFs.

— Can we extend the C-IPS lower bounds to “dynamic” versions of C-IPS? For instance,
can we prove lower bounds on PC refutations operating with multilinear formulas or
roABPs as in [Raz and Tzameret 2008b; Tzameret 2011]?

— Lower bounds on PI proofs of polynomial identities? Almost no lower bound is known
for these “algebraic fragments” of Frege and Extended Frege.

— Just like PI proofs are proofs for the (algebraic) language of polynomial identities, it is
very interesting to study the complexity of proof systems for other algebraic languages.
Two examples of such proof systems are the proof system for matrix identities inves-
tigated in [Li and Tzameret 2013], and the proof system for non-commutative rational
identities defined in [Garg et al. 2015]. Can we prove strong proof-size lower bounds on
these systems? Can we connect these systems further to propositional proof complexity?
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In this quarter’s column, Stephen Brookes and Peter O’Hearn describe how Concur-
rent Separation Logic (CSL) arose, including a little about the soundness proof and a
discussion of later developments that arose from CSL. The column is especially timely,
since Steve and Peter were just awarded this year’s Gödel Prize for their work on CSL.
The Gödel Prize was officially awarded for the papers [2] and [1] which describe CSL
and its semantics. The Gödel Prize is testament to the importance of CSL as a fun-
damental tool for proving concurrent programs correct; the soundness proof forms a
crucial component of this contribution.

It is impossible to talk about concurrent separation logic without mentioning sepa-
ration logic. The name “separation logic” was coined by John Reynolds in his invited
lecture at LICS’02 and the survey paper that followed [5]. There were many crucial
inputs to the development of separation logic. From the point of view of logic, an im-
portant precursor was the logic of bunched implications developed by Peter and David
Pym [3]. The crucial problem that separation logic addressed was reasoning about
programs that manipulate pointer structures. The fact that the structure is irregu-
lar means that the simple ideas that worked in Hoare-style logic for programs using
arrays fail to work here. Of course, it is not just a question of static structure. An essen-
tial problem is that data is being created and linked dynamically. As the Gödel Prize
citation says: “For the last thirty years experts have regarded pointer manipulation as
an unsolved challenge for program verification...”

In particular, concurrent programs that access data should avoid race conditions.
How can one be sure of that without knowing whether chains of pointers end up reach-
ing the same memory location? The sentence quoted above ends with “...and shared-
memory concurrency as an even greater challenge.” It is these problems which are of
central concern to practicing industrial programmers that CSL solves.

In the 1970s and 80s there was a great deal of interest in supercomputers and par-
allel execution of large-scale scientific programs. Here, of course, one has to deal with
similar problems of memory access conflicts. There had been quite a lot of success in
dealing with programs that used regular control structures like loops traversing ar-
rays, though much of the success was based on clever tricks involving the arithmetic
of index expressions. There was no hope that these ideas would apply to heap-based
structures being manipulated by recursive programs. In the late 1980s and early 1990s
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there were some significant new ideas, like alias analysis for pointers and points-to
analysis, which greatly extended the scope of what was possible with static analysis;
but there was nothing approaching a general Hoare-style logic for the analysis of pro-
grams that manipulated pointers.

This was what the late John Reynolds and Peter O’Hearn set out to address with
separation logic. Their ambition was nothing less than the ability to deal with the
“dirtiest” code that one could find in the kernels of operating systems and other similar
places, such as device drivers or garbage collectors. For those new to the field it is hard
to imagine how impossible that seemed. Indeed it still seems miraculous to those of us
who watched it happen!

The sequential version of separation logic reached maturity in the paper by O’Hearn,
Reynolds and Yang [4]. Dealing with concurrency was no trivial extension. Entirely
new ideas had to be brought to bear. The synergy between John Reynolds, Peter
and Steve was remarkable here. The original proposals of O’Hearn turned out to be
unsound, as was demonstrated by a subtle example due to Reynolds. Brookes and
O’Hearn overcame this by using new assertions that precisely specified regions of
memory. The evolution of these ideas is what the column they provide describes. Many
others played an important role in CSL and separation logic especially Hongseok Yang
and Cristiano Calcagno.

Steve’s and Peter’s work on CSL is one of the major milestones in the interaction
between semantic theory and practice in programming languages. Programming lan-
guage theory and logics of computation have the reputation of being far removed from
the concerns of “real-world” programmers. The recent establishment of an SL-based
verification group within Facebook, led by Peter, and the deployment of the Infer tool
within Facebook shows separation logic to be a striking exception. Efforts to extend
the tool to incorporate concurrency are underway. On the one hand CSL does use ideas
from logic, category theory and denotational semantics, on the other hand it is couched
in the paradigm of the conventional practicing programmer.

We are particularly thrilled to see this work recognized by the Gödel Prize. This
year’s prize is the 24th to be awarded and only the third to be awarded in the areas
of logics, verification and programming languages. This ranks CSL as not just an out-
standing contribution from two leaders of the logic and computation community, but as
a contribution to computer science as a whole. For a new SIG it is a fantastic testament
to the impact that logic and semantics can have on computer science as a whole.

On a personal level, it’s a special privilege to introduce Steve’s and Peter’s column.
In addition to being good friends and colleagues, they have been stalwarts of the an-
nual conference series on the Mathematical Foundations of Programming Semantics,
a conference series that we both help organize. While the major publications on sepa-
ration logic have appeared at venues such as POPL and in journals such as Theoretical
Computer Science, many of the early ideas were presented at MFPS. One of us (Panan-
gaden) was (along with Steve) on Peter’s PhD defence committee. It is a delight to see
that young researcher now recognized as one of the leaders of the field; as we say in
Canada, “Pretty good, eh?”

It’s also fitting that this spring’s MFPS meeting at CMU, with a special session to
honor Steve on his upcoming 60th birthday,1 provided an opportunity for the MFPS
community to celebrate the awarding of this year’s Gödel Prize to Steve and Peter
for their pioneering work. We are particularly happy to share this with the SIGLOG
community in this quarter’s semantics column.

1The MFPS tradition of honoring colleagues on significant birthdays began in 1995 when Steve and Bob
Tennent organized a session honoring John Reynolds on his 65th birthday.
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Concurrent Separation Logic

Stephen Brookes Peter W. O’Hearn
Carnegie Mellon University University College London

Concurrent Separation Logic (CSL) was originally advanced in papers of the authors published in The-
oretical Computer Science for John Reynolds’s 70th Birthday Festschrift (2007). Preliminary versions ap-
peared as invited papers in the CONCUR’04 conference proceedings. Foundational work leading to these
papers began in 2002. Since then there have been significant developments stemming from CSL, both in
theoretical and practical research. In this retrospective paper we describe the main ideas that underpin
CSL, placing these ideas into historical context by summarizing the prevailing tendencies in concurrency
verification and programming language semantics when the logic was being invented in 2002-2003. We end
with a snapshot of the state-of-the-art as of 2016. Along the way we describe some of the main developments
in the intervening period, and we attempt to classify the work that has been done, along broad lines. While
we do not intend an exhaustive survey, we do hope to provide some general perspective on what has been
achieved in the field, what remains to be done, and directions for future work.

1. CONTEXT, CIRCA 2002-2003
1.1. Verification of Concurrent Programs

For the last thirty years experts have regarded pointer manipulation as
an unsolved challenge for program verification and shared-memory concur-
rency as an even greater challenge. 2016 Godel Prize citation1

As of 2002-2003, there had already been significant foundational work on the verifi-
cation of concurrent programs, beginning with the classical work of Owicki and Gries
[Owicki and Gries 1976a], who adapted ideas from Hoare’s logic for sequential pro-
grams to a concurrent setting. Further important developments were made by Pnueli
[Pnueli 1981], bringing temporal logic to concurrency, and by Jones [Jones 1983], who
advanced the rely-guarantee proof method for compositional reasoning. There was also
a large school (more accurately, separate schools) of work that had built up around pro-
cess algebras such as CCS, CSP and the pi-calculus.

However, it is fair to say that at that time few realistic concurrent programs had
been subjected to proof, and this was especially true for mechanized proof. Yet, around
2002-2003, the field of mechanized program verification was going through a renais-
sance, spurred by verification-oriented abstract interpreters such as SLAM and AS-
TREE, and advances in proof assistants such as Coq, Isabelle and HOL. The hitch was

1http://eatcs.org/index.php/component/content/article/1-news/2280-2016-godel-prize
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that most of this work was for sequential programs. Model checking had been used to
verify certain finite-state concurrent programs used to describe hardware, with notable
success, but much less had been achieved by then for concurrent software.

Around the same time, the separation logic for sequential programs had recently
been advanced by O’Hearn, Reynolds and others as a way to provide efficient reason-
ing about pointer manipulation [Reynolds 2000; Ishtiaq and O’Hearn 2001; O’Hearn
et al. 2001; Reynolds 2002]. Separation logic was a significant advance over prior for-
malisms for reasoning about pointers (see [Bornat 2000] and its references for the
state of the art as of 1999), providing inference rules to localize reasoning about heap
chunks. Pointer mutation was also one of the key blockers in applying the founda-
tional approaches provided by the Owicki-Gries, temporal logic and rely-guarantee
methodology to real-world concurrent programs. Programs in C, Java and many cur-
rent languages often make non-trivial use of pointer manipulation, to great effect, but
reasoning about the correctness of such code is difficult even when the code is sequen-
tial, because of issues such as aliasing. Pressing these classic works into service for
proving correctness of code using pointers requires treating the memory as a global
array, and this leads to global proofs which are complicated and rather remote from
programming intuition. Often, programmers think of portions of memory a little bit at
a time, and employ localized reasoning that does not mention the whole memory; to
force programmers to think in terms of global state flies in the face of such intuition. It
therefore made sense to attempt to update one of these classical approaches to reason-
ing about concurrent programs by putting it together with separation logic, in which
localized reasoning is very natural.

O’Hearn considered all three of these prior foundational works as possibilities for
such an update, but gravitated to an even earlier work, Hoare’s 1972 paper “Towards
a Theory of Parallel Programming” (TTPP, [Hoare 1972]). Hoare’s paper might be con-
sidered to have been superceded by its successor works, because there were many pro-
grams which could not be expressed in TTPP because of syntactic restrictions used to
rule out race conditions and other forms of interference. But when it worked it allowed
for delightfully simple proofs.

A useful perspective is brought by noting, and contrasting, the existence of not one
but two Owicki-Gries logics. One [Owicki and Gries 1976b], which we will refer to as
race-free Owicki-Gries, extends TTPP by slightly relaxing syntactic restrictions in a
way that allows auxiliary variables to be used more freely in proofs, but still main-
taining control over interference. The other [Owicki and Gries 1976a], which we will
refer to as interference-allowing Owicki-Gries, allows interference between threads but
uses a novel means of checking that a thread does not inferfere with a proof of an-
other thread (note the concept of non-interference with proof, not with thread). The
interference-allowing form of Owicki-Gries is often referred to (without qualification)
as the “Owicki-Gries method”, and it attracted more attention than race-free Owicki-
Gries in work between the mid 1970s and 2002-2003, likely because it was applicable
to more programs. But Owicki and Gries also state that “the proof process becomes
much longer” in the less restrictive, interference-allowing Owicki-Gries system.

The design of Hoare’s TTPP approach (and also race-free Owicki-Gries) was based
almost completely, albeit implicitly, on intuitions of separation, so it just made sense
to try to recast these intuitions explicitly by making use of the more recent formalism
of separation logic.

1.2. Semantics of Concurrent Programs
At the same time that O’Hearn was considering ways to blend separation logic with
Hoare-style concurrency logics, the state-of-the-art in programming language seman-
tics of concurrency stood on foundations laid by David Park in the 1970s. Traditional
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approaches, whether denotational or operational, relied on traces of some kind. In
Park’s seminal work [Park 1979] a trace is a sequence of steps, each step representing
the effect of an atomic action performed on the global state by the program, assumed
to be running in an environment of concurrent processes. To achieve a compositional
account the trace set of a program includes traces with “gaps” allowing for the envi-
ronment to make changes to the global state. Concurrent processes are assumed to be
executed in a sequentially consistent manner, with the atomic actions of all processes
being interleaved. In later work Brookes used traces in which the steps represent the
effect of a finite sequence of atomic actions, a simple variation that led to a fully ab-
stract semantics [Brookes 1996].

These semantic models were only applicable to shared-memory programs without
data structures that could be mutated through pointer manipulation, a class of pro-
grams dubbed “simple” shared-memory by John Reynolds. For many years it had been
widely regarded as a difficult task just to find a tractable denotational model for simple
shared-memory, let alone develop a semantics that could deal with the combination of
shared-memory concurrency and mutable data structures. These traditional semantic
models were all based on global states and typically assumed that assignment to a
variable was an atomic action, ignoring the potential for race conditions, even though
it was known that when one process writes to a shared variable being read or writ-
ten by another there is a danger of unpredictability. Instead one of the rôles of logics
such as race-free Owicki-Gries [Owicki and Gries 1976b] and TTPP was to shift the
burden of race-detection from semantics to logic: an assertion {P}C{Q} approvable in
race-free Owicki-Gries logic comes with the guarantee that when C is executed from a
global state satisfying P there are no race conditions and upon termination the global
state satisfies Q. This logic-based methodology only works for races involving program
variables, which are statically detectable: they get dealt with in Owicki-Gries by im-
posing static constraints on variable usage in programs. This idea fails for programs
using pointers, because aliasing of pointers is not statically determinable.

In summary, in 2002-2003 there was not yet any suitable semantic foundation for
exploring the behaviour of concurrent programs that make non-trivial use of pointers.
And the currently existing program logics that worked well enough for pointer-free
concurrent programs relied on syntactic constraints to rule out race conditions, which
prevents their use in richer settings where the existence of a potential race cannot
merely be deduced from program syntax.

2. THE BIRTH OF CONCURRENT SEPARATION LOGIC
2.1. Logic
The most important proof rule of Concurrent Separation Logic is the

PARALLEL COMPOSITION RULE

{P1}C1 {Q1} · · · {Pn}Cn {Qn}
{P1 ⇤ · · · ⇤ Pn}C1 k · · · k Cn {Q1 ⇤ · · · ⇤Qn}

Here, the separating conjunction P1⇤· · ·⇤Pn in the precondition of the parallel composi-
tion is true of a state that can be partitioned into substates making the conjuncts true,
and similarly for the post-condition. So the rule says: To prove a parallel composition
we give each process a separate piece of state, and separately combine the postcon-
ditions for each process.2 The rule supports completely independent reasoning about

2In the earliest versions of CSL these rules were accompanied by side conditions governing variables (but
not the heap), such as: no variable free in Pi or Qi is changed in Cj when j 6= i. This was an historical pre-
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processes. And, it is unsound if ⇤ is replace by ^ because mutations in one process
would invalidate the reasoning about common state in another process.

In this expository paper we will show “proof outlines” rather than logical proofs, and
without even formally defining the logic in full; we hope that the spirit of the proof
methodology can be gleaned from the assertions placed at program points.

An example use of the parallel composition proof rule is given by a proof of parallel
mergesort. In the key step

{array(a, i,m) ⇤ array(a,m+ 1, j)}
{array(a, i,m)} {array(a,m+ 1, j)}
ms(a, i,m) k ms(a,m+ 1, j)
{sorted(a, i,m)} {sorted(a,m+ 1, j)}

{sorted(a, i,m) ⇤ sorted(a,m+ 1, j)}
we first reason independently about two independent recursive calls which operate on
disjoint subarrays, and then reason about merging the sorted subarrays.

This method of reasoning about parallel mergesort is simple, straightforward, al-
most trivial. And that is the point. In the previous formalisms (interference-allowing
Owicki-Gries, Rely-Guarantee, Temporal logic) parallel mergesort would require a
complicated proof which had to explicitly describe, and then rule out, the possibility of
interference. On the other hand, in TTPP and race-free Owicki-Gries parallel merge-
sort is not even syntactically well-formed, because assignments to components of an
array in separate threads are viewed logically as assignments to the same variable;
although these systems are intuitively about separation, their syntactic constraints
are coarser than separation-expressed-with-logic. The CSL proof, in contrast, follows
the informal reasoning directly. Although this simple reasoning pattern naturally has
its limitations, it illustrates a principle which should be central in the subject of logics
of programs: that is, simple proofs for simple programs. It is all too easy to get caught
up in completeness and related issues for formal systems that turn out to be too com-
plicated when humans try to apply them; it is more important first to get a sense for
the extent to which simple reasoning is or is not supported.

Still, if CSL had only been able to reason about “disjoint concurrency”, where there
is no inter-process interaction, then it would have rightly been considered rather re-
strictive. A proof rule for conditional critical regions (a forerunner of monitors) allows
reasoning about such interaction.

CRITICAL REGION RULE

{(P ⇤RIr) ^B}C {Q ⇤RIr}

{P} with r when B do C {Q}
This rule assumes given an association of a “resource invariant” RIr, to each “resource”
r appearing in the program. A resource is like a monitor lock: it provides mutual exclu-
sion for different occurrences of critical regions for r in a program. The rule supports
modular reasoning by using the separating conjunction to control the visibility of the
state described by the invariant, as well as the invariant itself.

An important early example done with CSL was the pointer-transferring buffer. In
this example one thread allocates a pointer and puts it into a buffer, while the other
thread reads it out and disposes (frees) it. The important thing about this code is that

sentational choice to do with keeping consistent with earlier Hoare logics; more recently, logics are given in
which ⇤ handles all noninterference (“variables as resource”, [Parkinson et al. 2006]) or where local variable
mutation is restricted to be thread-local.
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not only is the pointer deemed to transfer from one process to another, but the “knowl-
edge that it is allocated” or the “right to dereference it”, or more simply “ownership” of
the pointer, transfers with the proof. From the point of view of the buffer clients the
proof of ownership transfer looks like this

{emp ⇤ emp}
{emp} {emp}
x := cons(a, b); k get(y);
{x 7! –, –} {y 7! –, –}
put(x); use(y);
{emp} {y 7! –, –}

dispose(y);
{emp}

{emp ⇤ emp}
{emp}

where the buffer code itself is

put(x)
�
= with buf when¬full do

c := x; full := true;

get(y)
�
= with buf when full do

y := c; full := false;

To reason about the buffer code using the critical region rule we supply a resource
invariant

RIbuf : (full ^ c 7! –, –) _ (¬full ^ emp)

saying that the buffer owns the binary cons cell associated with c when full is true,
and otherwise it owns no heap cells. The entire program begins with an initialization
full := false that establishes the invariant.

Then we can provide a proof outline for the body of the with command in put(x).

{(RIbuf ⇤ x 7! –, –) ^ ¬full}
{(¬full ^ emp) ⇤ x 7! –, –}
{x 7! –, –}
c := x; full := true

{full ^ c 7! –, –}
{RIbuf}
{RIbuf ⇤ emp}

The rule for with commands then gives us

{x 7! –, –}put(x){emp}.

The postcondition indicates that the sending process gives up ownership of pointer x

when it is placed into the buffer, even though the value of x is still held by the sender.
A crucial point in the proof of the body is the penultimate step which passes from

full ^ c 7! –, –

to RIbuf, reflecting the idea that the knowledge “x points to something” flows out of the
user program and into the buffer resource. Some inverse manipulations give us the
spec

{emp}get(y){y 7! –, –}.
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for getting an element out of the buffer, where the knowledge that y points to some-
thing materializes in the postcondition.

The ownership transfer idea illustrated by this buffer example made it clear that
quite a few concurrent programs would have much simpler and more intuitive proofs
than before, and that a wider class of programs would be susceptible to formal analysis.
Modular proofs were provided of semaphore programs, of a toy memory manager, and
programs with interacting resources. Generally speaking, ownership transfer allows
modular reasoning about ‘daring concurrency’, where where a piece of state is accessed
even outside of groupings of mutual exclusion. It seemed as if the logic could explain
the way that synchronisation had been used in the fundamental works on concurrent
programming by Dijkstra, Hoare and Brinch Hansen. For example, in the paper that
essentially founded concurrent programming, Dijkstra (Co-operating Sequential Pro-
cesses, [Dijkstra 1968]) had explained that the point of synchronisation was to enable
programmers to avoid minute considerations of timing, in order to simplify reasoning.
Brinch Hansen had emphasized the importance of speed independence and resource
separation for simplifying thinking about concurrent processes when O’Hearn was his
colleague at Syracuse in the 1990s, and what he said seemed to be mirrored in the
proofs in this early concurrent separation logic.

In summary, the most important contributions of the logic are as follows.

— it provides a modular way of reasoning about concurrent programs by separating the
state that different threads access,

— while achieving this in the presence of pointer access and mutation,
— and it supports modular reasoning about process interaction, even in the presence

of ‘daring concurrency’ where common state is safely accessed by different processes
outside of critical regions or other mutual exclusion constructs (as in a memory man-
ager or the pointer-transferring buffer).

But, soundness was challenging.

2.2. Semantics
It was the very feature that gave rise to the unexpected power in the logic, the own-
ership or knowledge transfer, that made soundness non-obvious. O’Hearn was able to
state principles intended to give some justification for the logic, such as the following.

Ownership Hypothesis. A code fragment can access only those portions of
state that it owns.

Separation Property. At any time, the state can be partitioned into that
owned by each process and each grouping of mutual exclusion.

But these principles were stated only informally. O’Hearn worked hard on the sound-
ness problem for several months in the second half of 2001 and early in 2002, and got
nowhere near a formal soundness theorem. During 2002 he asked Brookes, an expert
in the semantics of concurrency, for help.

To establish soundness of CSL we needed a semantic model capable of dealing both
with concurrency and pointer maipulation, suitable for formalizing and supporting
accurate reasoning about ownership and separation. Although these notions seem in-
tuitive, it was not at all obvious at the time how to design a suitably comprehensive
denotational semantics, and how to make rigorous the idea behind ownership transfer
and the notion that (provable) processes mind their own business. A key design choice
was to take a more localized view of states, so that a global state could be seen as a
combination of separate pieces of state deemed to belong to processes and resources.
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While it may appear fairly straightforward to extend Park-style global traces to han-
dle pointers and mutable state, this leads again to a semantics based on global states
and it was unclear how to build in a more localized view of state. Instead we had
the idea of abstracting away from state and using traces built from “actions” , ini-
tially uninterpreted and only characterized abstractly, which can later be interpreted
as having an effect on state. In this two-stage approach, we would be free to instantiate
the notion of state in whatever way we needed, either as global or as local. We would
be able to analyze program behavior, independently of the logic, using global states;
and to formalize ownership transfer and separation properties by taking a local view
of traces. Another advantage, which emerged later, is that the same action trace se-
mantics would turn out to be usable in validating a number of later program logics
inspired by CSL, such as logics of permissions, merely by interpreting actions over an
alternative notion of state, such as permissive states.

To deal with race-detection we introduced a form of interleaving operator for traces
that detects race conditions and treats them as catastrophic. This is the right choice
to obtain a semantics capable of establishing when a program is race-free. The new
semantic model, which we refer to as action traces, is strongly influenced by Dijkstra’s
Principle [Dijkstra 1968]:

. . . processes should be loosely connected; by this we mean that apart from
the (rare) moments of explicit intercommunication, the individual processes
are to be regarded as completely independent of each other.

In other words, concurrent processes do not interfere except through explicit syn-
chronization. Action trace semantics reflects this idea through the interplay between
traces, which describe interleaved behaviors of processes, and a “local enabling” re-
lation that implements the “no interference from outside” notion. This interplay is
crucial in permitting a formalization of O’Hearn’s intuitive concept of “processes that
mind their own business”. To our knowledge, this was the first semantics in which such
a formalization is possible.

The key novel features of this semantics:
— a compositional action-trace semantics built from “uninterpreted” actions, capable of

incorporating both concurrency and pointers;
— a race-detecting interpretation of parallel composition;
— a global-state interpretation of actions and traces, consistent with a standard opera-

tional notion of execution;
— a local-state interpretation of actions and traces (“local enabling”), suitable for for-

malizing ownership transfer and the separation principle
Local enabling formalizes the notion of a process executing in an environment that
respects resources (obeys the separation principle) and “minds its own business” by
following the ownership transfer discipline embodied by the resource invariants. A key
ingredient in the soundness proof is a Parallel Decomposition Lemma; in simplified
form, this says that when c1kc2 is a race-free program, every interleaved computation
of c1kc2 can be decomposed into “local” computations of the constituent processes c1

and c2 which are interference-free except for interactions with protected resources.
Our soundness proof assumes that each resource invariant is precise, so that every

time a program acquires or releases a resource there is a uniquely determined por-
tion of the heap whose ownership can be deemed to transfer. This does not seem to
be a major limitation, since all of O’Hearn’s examples involve precise invariants, and
a methodology based on precision seems very natural [O’Hearn 2007]. Moreover this
limitation is sufficient to ensure soundness, and it suffices to avoid a counterexample
discovered by John Reynolds showing unsoundness when resource invariants are al-
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lowed to be arbitrary separation logic formulas and the usual Hoare logic proof rule for
conjoining postconditions is allowed. During the evolution of the semantic foundations
John Reynolds played an important guiding rôle, and it is entirely appropriate that
the two CSL papers bear dedication to him.

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007) RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)
Total-TaDA (2016)

Iris 2.0 (2016)

FTCSL (2015)

Jacobs-Piessens (2011)

RSL (2013)

LiLi (2016)

Bell-al (2010)

Fig. 1. CSL Family Tree (courtesy of Ilya Sergey)

3. DEVELOPMENTS IN THEORY
3.1. Logic
There have been many logics that extend or build on the ideas in CSL; Figure 1 gives
an indication. The motivation for several of these logics has simply been to treat varied
programming primitives that are used when writing concurrent programs. For exam-
ple:

— Storable locks. The original CSL used statically allocated locks, whereas real pro-
grams often use dynamically-allocated locks that can themselves be stored [Gotsman
et al. 2011];

— Re-entrant locks. CSL’s critical sections cannot be nested, and similarly if you hold a
semaphore and attempt to grab it again you will deadlock. On the other hand, Java’s
locks are such that a thread that holds a lock can acquire it again [Haack et al. 2008];

— Fork/join. CSL is formulated using structured parbegin/parend or parallel composi-
tion k to describe concurrent threads, which has been extended to fork/join concur-
rency constructs [Haack and Hurlin 2008; Dodds et al. 2009];

— Message Passing. [Villard et al. 2009; Bell et al. 2010; Lei et al. 2014];
— Relaxed memory. [Vafeiadis and Narayan 2013].

A very unexpected development has been the demonstration that the most basic
principles of concurrent separation logic, particularly independent reasoning about
threads using the separating conjunction, cover a much broader range of situations
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than we ever expected. There have been proofs of fine-grained locking and non-blocking
concurrency, and cases that involve interference and general graph structures, what
might have been thought of originally as cases that don’t fit well with the ideas of
separation logic.

Interestingly, the unexpected power of this is based on what you might call “non-
standard models” of separation logic; we mean this by analogy with the usual situa-
tion in logic, where a theory (e.g. reals, or integers) has an intended model, but also
additional non-standard models of the same axioms. The proof theory may then ac-
complish unexpected things when applied to the non-standard models. The standard
model of separation logic is the original model based on splitting portions of the heap,
or heaplets. There are many other models stemming from the “resource semantics” of
bunched logic invented by David Pym [Pym et al. 2004]; the preconditions and post-
conditions in separation logic and an instance of bunched logic [Ishtiaq and O’Hearn
2001]. Indeed, “abstract separation logic” [Calcagno et al. 2007a] defines a version of
CSL starting from an arbitrary partial commutative monoid of program states, in place
of the standard partial monoid of heaplets and disjoint union. A partial commutative
monoid (M, •, e) induces an ordered total commutative monoid on the powerset P(M),
and this is used as the semantics of P ⇤ Q. In fact, even more generally we could go
beyond powerset models and define an abstract separation logic where a model is an
ordered total commutative monoid; this gives enough structure to formulate the proof
rule for parallel composition and the rule of consequence. More structure can be added
(such as meets and joins) to interpret other logical connectives, depending on what is
needed in an application.

The surprise is that some of these nonstandard models involve composing highly
intertwined structures and interfering processes, what might have been considered
bad cases for the ideas behind separation logic. Gardner coined the phrase “fiction of
separation” to describe this phenomenon in the nonstandard models. Here are some
representative works.

— Permissions. These are models where heap locations have additional information at-
tached, which sometimes affects heap composition. An insightful paper of Boyland
[Boyland 2003] influenced CSL work where fractional and counting permission mod-
els were given to account for concurrent reads and for the classic readers-and-writers
problem[Bornat et al. 2005], and since then a wide variety of permission models have
been invented and applied.

— Abstraction and Fictions of Separation. The logic of Concurrent Abstract Predicates
(CAP) of [Dinsdale-Young et al. 2010a] provides a powerful means of disjoint reason-
ing about processes accessing an abstract module, when the concrete implementa-
tions are in fact not disjoint. This aspect, which builds on observations about the ”fic-
tion of disjointness” from work in sequential separation logic [Dinsdale-Young et al.
2010b], significantly expands the possibilities for applying CSL-style reasoning to
fine-grained concurrent algorithms. CAP provides means of connecting an abstract
module to a concrete implementation in a way that allows more apparent separation
on the abstract level. Extensions of CAP have been used to do impressive verifica-
tions of libraries of synchronization primitives (e.g., [Svendsen et al. 2013; Dodds
et al. 2016]). CAP has influenced many follow-on logics, as can be seen in Figure 1.

— Views. Dinsdale-Young, Parkinson and colleagues show that a simple abstract version
of concurrent separation logic can embed many other techniques for reasoning about
concurrency including type systems and even the classic rely-guarantee method,
which was invented for the purpose of reasoning about interference [Dinsdale-Young
et al. 2013]. Earlier work had sought combinations of separation logic and rely-
guarantee [Feng et al. 2007; Vafeiadis and Parkinson 2007], but this work and [Dodds

ACM SIGLOG News 55 July 2016, Vol. 3, No. 3



et al. 2009] demonstrated that by picking a suitable monoid that expresses interfer-
ence rely-guarantee could be expressed with a separation logic, constituting a valu-
able synthesis. Views also provides logical or fictional separation. It is a framework
that can be instantiated to many logics, and so does this in a considerably more gen-
eral way than CAP, while partly taking inspiration from it.
The logic of Views is similar to that of Abstract Separation Logic, but the seman-
tics is different, and this is what opened up the possibility of a broader variety of
instantiations of the framework: we say more on this in the next section.

— Modular reasoning about history. It is very natural to use temporal reasoning when
reasoning about concurrent algorithms. For example, there are cases when wants to
talk about the value of a piece of state sometime in the past, or between two time-
points. [Fu et al. 2010] and [Sergey et al. 2015] define logics that support modular
ways for reasoning about both space and time, based on ways to compose histories,
and they illustrate the power of this form of reasoning by proving optimistic and fine-
grained locking concurrent algorithms. The previously-mentioned logics for message
passing [Villard et al. 2009; Bell et al. 2010; Lei et al. 2014] also include support for
reasoning about history.

Before moving on it will be instructive to consider an example of a non-standard
model from the Views work [Dinsdale-Young et al. 2013]. Assume a partial commu-
tative monoid (M, •, e) (e.g, the monoid where M = L *f V is heaps and • is union
of disjoint heaps). An interference relation is a subset R ✓ M ⇥ M satisfying certain
conditions. Then we can define a total commutative monoid (Stab, ⇤, {e}) where the set
Stab = {p ✓ M | Rp ✓ p} consists of those sets (predicates) that are stable under
the interference relation. ⇤ is a lifting of •, where p ⇤ q = {hp • hq | hp 2 P and hq 2
q and hp • hq #}. The (unstated, here) conditions on R ensure that {e} and p ⇤ q are
stable.

The notion of stability under interference is one of the hallmarks of rely-guarantee
reasoning. Models based on monoids like (Stab, ⇤, {e}) provide one of the ways that
separation logics can be used to reason modularly about interfering processes.

Even with the tremendous progress that has occurred, techniques for modular rea-
soning in the presence of fine-grained interference continue to evolve, with several
substantial works appearing just in the past year or so; e.g. [Raad et al. 2015; Jung
et al. 2015; da Rocha Pinto et al. 2016; Liang and Feng 2016].

3.2. Semantics
The action traces semantics of Brookes was denotational by choice: a denotational se-
mantic description lends itself naturally to compositional reasoning, and this can be
an advantage because most of the inference rules of CSL are syntax-directed, like the
semantic clauses. (The exceptions are rules such as the Frame Rule, and the Conjunc-
tion Rule, in which the premiss and conclusion involve the same program and such
rules typically express some general semantic or behavioral property applicable to all
programs.)

Nevertheless, much of the notation used by Brookes in the soundness paper was
deliberately chosen to emphasize intuitive similarities with operational style. For ex-
ample, the notation for local enabling and global enabling resembles the labelled tran-
sition relations common in operational semantics. These remarks reflect the view that
denotational and operational semantics should be seen as complementary styles of
language description, not mutually exclusive.

As we have seen, CSL led to a proliferation of successor logics. Some of these can
claim common philosophical links with the original logic, in that they are based on
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analogous to the Separation Principle and Ownership Transfer, while departing in
ways from the original, while others use proofs that do not depend on these principles.

— [Brookes 2006]: Brookes extends his semantics to cover permission-based variants of
CSL, such as fractional and counting permissions [Bornat et al. 2005] and variables
as resource [Parkinson et al. 2006].

— [Calcagno et al. 2007a]: the soundness result for Abstract Separation Logic is given
by a generalization of the approach in Brookes’s semantics, from the particular model
of heaps to work for arbitrary (cancellative) partial commutative monoids, assuming
that primitive operations satisfy a locality conditions ensuring that they “mind their
own business”.

— [Hayman and Winskel 2008]: a “true concurrency” denotational semantics based on
Petri nets. The intuitions expressed in the Separation Property and in Dijkstra’s
principle of loose connectedness are givien formal underpinnings using the concept
of independence from Petri nets. This explains the CSL phenomenon “the order of
certain interleavings doesn’t matter for provable programs” in terms of a well estab-
lished, prior notion of independence.

— [Hobor et al. 2008]: a Concurrent Separation Logic with first-class locks and threads,
with a soundness proof based on an operational semantics. The work is notable for
introducing two operational semantics, one a standard concurrent semantics and
the other an “oracular” semantics which is closer to the intuitions of CSL; the logic
is proven sound wrt the oracular semantics, and then the semantics is separately
connected to the standard concurrent model. This division mirrors Brookes’s use of
global and local enabling relations, but is done employing operational rather than
denotational semantics.

— [Vafeiadis 2011]: a soundness result formulated in an inductive manner that matches
the stepwise “small-step” operational style of semantics. In contrast to the aforemen-
tioned works, Vafeiadis does not employ an additional semantics (the oracle seman-
tics, or local enabling relation) which is more logical than a standard semantics; he
connects the logic directly to the semantics in one step, with a novel interpretation
of Hoare triples. This would be no win if the connection was more complex than the
composition of two semantics, but Vafeiadis’s proof is notable as well for being math-
ematically very elementary.
Vafeiadis is also able to show soundness of CSL without precise invariants and with-
out the conjunction rule, as well as of the original CSL.

— [Gotsman et al. 2011]: another operational approach, but where Vafeiadis uses a
structural operational semantics à la Plotkin, which involves program rewriting,
Gotsman et al use a fixed-program semantics that updates a program counter with-
out rewriting the program; this is the kind of semantics often used in the temporal
logic and model checking communities. With this form of semantics they are able
to give a very direct expression of the Separation Property, and also a mathemati-
cally elementary proof. And, again like Vafeiadis, they show soundness for versions
of separation logic with and without precise resource invariants.

There are extensions of relatives of CSL that are not conceptually based so directly
on the Ownership+Separation ideas, and then it is more difficult to employ a proof
technique that directly extends Brookes’s original approach. In particular, CAP and
its descendants and other related logics use the rule of parallel composition to reason
about interfering processes. A very general account of this kind of situation is provided
by the Views work [Dinsdale-Young et al. 2013]. As we mentioned above, the logic of
Views is a close relative of Abstract Separation Logic, but its semantics is entirely
different.
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— Views considers a model of a separation logic assertion as an abstract interpretation
[Cousot and Cousot 1977] of a concrete semantics, not the concrete semantics itself.
There is a concretization function b·c taking an abstract state p to a set of concrete
states bpc. Furthermore, ⇤ is required to exist in the abstract semantics, but not in
the concrete.

— A non-standard interpretation of Hoare triples is given that “bakes in” the frame
rule of separation logic for every step of the execution of C: {p}C{q} is true of views
(abstract states) p and q iff for each trace a of C, there exists an s such that the triple
{bsi ⇤ rc}ai{bsi+1 ⇤ rc} is true in the usual interpretation of triples in the concrete
semantics for all r, and s0 = p, and if a is finite then its last state is q.

— The soundness property is stated with respect to a standard concrete operational se-
mantics, without employing an additional, more abstract operational or denotational
semantics.

Considering separation logic states as abstract states, or views of concrete states,
makes great sense. Even in the original heap splitting model, a finite “heaplet”
h : L *f V would rightly be considered as a portion of many actual machine states,
not a machine state on its own; it was convenient and simple at the time not to for-
malize the fact that the heaplets were abstractions of many states; we can easily draw
these portions of heap, without talking about all the enclosing global heaps. But as
the states in the models become more intricate, the punning of separation logic models
as “like” real states starts to break down. In a fractional permission model a heaplet
[10 7! 47, 1/2] says that location 10 holds value 47 and has “permission 1/2”. The opera-
tional sensibility of permission models is much easier to grasp when such a heaplet is
thought of as an abstract state rather than a concrete one on which programs execute.
And beyond making intuitive sense, the Views semantics provides a validation of the
rules of a version of CSL for models which allow for interference. The operative con-
cept for Views is that of context: every step of the program must preserve all possible
contexts (expressible by framing via ⇤r). The Ownership Hypothesis and Separation
Property together give a simple way to obtain contexts that are preserved, but Views
both formalizes and exploits a more general setup in which there are others.

We remark that the proof technique of [Vafeiadis 2011], discussed above, also takes
the tack of baking in the frame rule. It is similarly applicable to CAP and other logics
where the Separation Property and Ownership Hypothesis would not apply. Thus, we
see that the conceptual foundation of CSL-like logics has broadened over time, and
with that logics that exploit the broadening have appeared.

Another trend in work on separation logic has been towards taking an axiomatic
perspective, where what counts as a model of ⇤ is subject to axioms rather than fixing
on a single model to work with. This trend can be seen in Abstract Separation Logic
and Views, as well as in other advanced logics such as Iris and HoCAP where the
programmer (or human verifier) gets to “pick a monoid”. The axiomatic perspective
has been taken further still in recent work on Concurrent Kleene Algebra [Hoare et al.
2011; Hoare et al. 2014]: they abstract not only from the semantics of logical assertions,
but even from the semantics of programs. In brief:

— A CKA is an ordered monoid (;, skip) and an ordered commutative monoid (k, skip),
linked by the exchange law

(p k r); (q k s) v (p; q) k (r; s).

(Variants on CKA can have more structure, such as involving meets or joins.)
— A concurrent separation logic can be derived from a CKA by making the definition

{p}c{q} = p; a v q.
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— An operational semantics related to Milner’s for CCS can be derived by making the
definition p

a! q = p w c; q.
— The operational semantics and logic are automatically in unison; we don’t need to

prove a theorem connecting them.
— A number of concrete models (instances of the algebra) have been given, particularly

ones based on a true concurrency view of the world where ; is weak sequential com-
position and k is a form of composition of pomsets.

Concurrent Kleene Algebra is more abstract than most other work on CSL, in that
it does not depend on a particular semantics of programs. While abstract in this sense,
the operational semantics that it derives has not been shown to cover all the cases yet
that (say) the Views theory covers; see [O’Hearn et al. 2015] for further discussion. So
while CKA is more general that Views or Abstract Separation Logic on some dimen-
sions, it is not (known to be) on others. However, it is a beautifully simple theory which
is remarkable for the unification of logic and operational semantics it achieves when
it is applicable, and this can be taken as an inspiration or a starting point for further
work.

4. DEVELOPMENTS IN MECHANIZED VERIFICATION
Mostly-Automatic Verification. Smallfoot [Berdine et al. 2005], the first separation

logic verification tool, included support for CSL from the beginning. The user would
input resource invariants and other annotations such as procedure pre/post specs,
and then Smallfoot would attempt to construct a program proof. For the pointer-
transferring buffer, given the resource invariant and pre/post specs for the put and
get operations it can verify pointer safety and race freedom of the client code. Small-
foot used a decidable fragment of separation logic oriented to linked lists and simple
trees, and implemented a special theorem prover for this fragment.

Smallfoot is an example of a verifier where the programmer helps the tool along by
inserting (some) annotations, but then the verifier behaves automatically. There are a
number of other tools for mostly-automatic verification of this kind, which extend or
build on the reasoning in CSL.

— SmallfootRG [Calcagno et al. 2007b] is a verifier for a marriage of separation
logic and the classic rely/guarantee method for concurrent programs [Vafeiadis and
Parkinson 2007].

— Heap Hop [Villard et al. 2010] is another extension of Smallfoot. It implements the
copyless message passing logic of [Villard et al. 2009] and checks their protocols using
certain automata.

— Chalice [Müller and Summers 2016] uses an expressive permission system and also
targets reasoning about deadlock. It is based on a variant or relative of separation
called “implicit dynamic frames” [Parkinson and Summers 2012], and leverages an
embedding into first order logic, then utilizing an SMT solver rather than a custom
theorem prover like that used by Smallfoot.

— VeriFast [Jacobs et al. 2016] is an advanced mostly-automatic verifier. Where the
previously-mentioned tools work for toy, illustrative programming langauges, Veri-
Fast applies to C and Java programs. It has been used to produce proofs for programs
ranging from object-oriented patterns to highly concurrent algorithms to systems
programs. Examples of fine-grained concurrent programs proven include hand-over-
hand locking on linked lists and lock-free queues.

— Mezzo [Balabonski et al. 2014] and Asynchronous Liquid Separation Types [Kloos
et al. 2015] use novel type systems which incorporate ideas from CSL into a program-
ming language. The mode of usage is similar to the other mostly-automatic verifiers
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above, but the aim is to be less expressive (and less of a burden) and to weave the
specifications in with the types of a programming language. Related ideas can be
found earlier in Cyclone, and more recently in the ownership typing that happens
in the Rust language. It seems as if there is a lot of room for experimentation and
innovation in this space.

Interactive Verification. In interactive verification the human helps with the proof
effort, commonly in a proof assistant such as Coq, HOL or Isabelle. With interactive
verification it is possible to get closer to proofs of full functional correctness than it is
with automatic verifiers, but the cost is higher. There are a number of embeddings of
CSL and relatives in the Coq proof assistant, and more complex programs have been
proven over time.

— [Feng et al. 2008] treat interrupts and preemptive threads as found in OS kernels.
They use an ownership-transfer semantics where portions of state are transferred
between interrupt handlers and threads. Pre-emptive thread libraries for locks, con-
ditions variables and context switching, comprising some 300 lines of x86 assembly
code, were machine certified; the proof took 82k lines of Coq, including more than 1k
definitions and 1.8k lemmas and theorems

— [Sergey et al. 2015] report on the verification using the aforementioned Fine-grained
CSL. They provide verifications of a variety of low-level algorithms including a CAS-
lock, a Ticketed lock, a GC allocator, a non-blocking stack, and a concurrent spanning
tree construction. Proofs range from hundreds to 2k lines of Coq. An emphasis is
placed on reusability; for instance, the stack uses the GC allocator, which in turn
uses a lock, but the stack uses the spec of the allocator and the allocator uses the
spec rather than the implementation of a lock.

— [Xu et al. 2016] verify key modules of a commercial preemptive OS kernel, the µC/OS-
II kernel. The authors report that the ownership transfer idea of CSL plays a key
role in the specifications and proofs. Modules verified include the scheduler, inter-
rupt handlers, message queues, and mutex locks. 1.k lines of C code is verified using
216k lines of Coq, including framework code. It took 4 person years to develop the
framework, 1 person year to prove the first module (for message queues), and then
the remaining modules, consisting around 900 lines of C code, were done in 6 person-
months.
This is apparently the first commercial pre-emptive kernel to have been verified (a
number of high profile non-premptive kernel verification efforts, such as the cele-
brated seL4 project, have gone before).

Automatic Program Analysis.. With a verification-oriented abstract interpreter the
program annotations that a human would supply to a mostly-automatic verifier –
such as loop invariants, and sometimes pre/post specs – are inferred using a vari-
ety of techniques such as fixed-point iteration, widening and narrowing, interpolation,
and abduction. Naturally, a verification tool will be able to prove less when the hu-
man is not supplying annotations, but the corresponding gain is that the techniques
can be wholly automatic, working on bare code without asking the human for help to
get started. Thus, verification-oriented abstract interpreters can be deployed with less
friction than can mostly-automatic verifiers.

Abstract interpretation with sequential separation logic has seen rather a lot of at-
tention; see [Calcagno et al. 2011] and its references. There have been comparatively
fewer works on abstract interpretation with CSL (admittedly, a very difficult problem).

— [Gotsman et al. 2007] were the first to show how to infer resource invariants in CSL.
They use reachability in the abstract heap to decide how to divide the state between

ACM SIGLOG News 60 July 2016, Vol. 3, No. 3



shared and thread-local after each critical region. Then, the invariants are discovered
by convergence of a fixed point in the usual way of abstract interpretation.

— [Calcagno et al. 2009] also infers resource invariants, but differs from the work of
Gotsman et al by using the concept of footprint rather than reachability to divide the
state after critical regions. This allows them to prove some of the ownership transfer
example, such as O’Hearn’s pointer-transferring buffer, that cannot be proven with
the technique of Gotsman et al. Footprints are approximated using the abductive
inference technique of [Calcagno et al. 2011].

— [Botincan et al. 2012] describe an algorithm that takes as input a sequential pro-
gram with a proof in separation logic and some additional annottions, and outputs
a concurrent program with a proof in CSL. Abduction is used to perform the decom-
posiitons needed to do the CSL proof.

These works make good steps, but program analysis with CSL is underdeveloped com-
pared to the work in mostly-automatic and interactive verification. This is an imbal-
ance that is deserving of further attention in the research community, especially since
the possibility for broad impact is, except possibly in the very long term, much greater
with verification-oriented abstract interpreters than less automatic tools.

5. CONTEXT, CIRCA 2016
At the beginning of the paper we mentioned that, as of 2002-2003:

— few realistic concurrent programs had been subjected to proof, and
— the semantics of concurrency for “simple” shared memory programs was well de-

veloped, but we were lacking tractable models for shared memory programs with
structured state accessed via pointer manipulation.

Expanding on the latter, we needed to be able to explain the connection between such
concepts as race freedom, the Separation Property and Ownership Hypothesis, and
the sense of independence in Dijkstra’s principle of loosly connected processes. It was
easy to define some model for a concurrent language, but not one that let us delve into
these sorts of properties; and they were all intimately related to the initial Concurrent
Separation Logic.

Fast-forward to 2016 and, on the verification side:

— many small but realistic and increasingly intricate concurrent programs have been
verified interactively and semi-automatically, and there are tens of implemented
tools to do so, and

— a significant portion of an industrial, pre-emptive OS kernel has been verified.

These advances are beyond what we would dared to imagine in 2002-2003. Shortly
after CSL was introduced, we were given the friendly challenge by Doug Lea (au-
thor of java.util.concurrent, a library full of advanced tricks) to verify optimistic, non-
blocking algorithms. These algorithms seemed beyond the intuitive reach of the initial
CSL techniques, and we wrestled with them for quite some time (see, e.g., [Parkinson
et al. 2007] for early struggles). But with perseverence and insight the field as a whole
has moved to the point where mechanized verification of another of these algorithms
now comes as no surprise. Concerning OS verification, as soon as CSL was available
Berdine and O’Hearn became keenly interested in the problem of attacking a micro-
kernel; microkernel designs seemed to fit CSL conceptually, but verification technology
for concurrent programs was not sufficiently developed, at least as far as we knew, to
make such an effort feasible as of 2002-2003.

While the distance we have come in verification is very positive, to keep some per-
spective on what has been achieved it is important to stress that the tools referred to
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here are from the research sector. We have not yet seen concurrent software routinely
verified within industry, by industry and not by researchers from either academia or
industry; that is, verification of concurrent software is not yet deployed.

On the semantics side, there has been a flurry of development. We have models sup-
porting increasingly simple and powerful proof methods. Soundness has been proven
for concurrency logics not only with higher-order predicates but even with higher-order
store obtained from storing resource invariants. The semantic models incorporate sep-
aration and interference at the same time. And there are general frameworks like in
the Views work which give general conditions that allow to formulate concurrent sep-
aration logics for a given situation.

So there has been significant progress in logic and semantics. But there is much
more work to do.

One important direction in pure theory is unification. The diagram in Figure 1 show-
ing the CSL family tree shows a lot of variation, and it would be valuable to bring to
a form of conclusion all of the developments on non-standard models and variations of
CSL. The Views and Concurrent Kleene Algebra work both provide interesting start-
ing points. There are also a lot of related ideas swirling around in models for weak
memory and for distributed databases that have not been fully worked out. It seems
that there is good and possibly deep theoretical work to be done.

As we have seen there has been a lot of progress in mechanized verification of concur-
rent programs; but there has been less in automatic program analysis. With program
analysis we would like to give programmers feedback without requiring annotations,
say by trying to prove specific integrity properties (such as memory safety or race
freedom); annotations can help the analysis along, but are not needed to get started,
and this greatly eases broad deployment. A number of prototype concurrency analyses
based on CSL have been developed, as we mentioned in the previous section, but there
has been much more work applying sequential separation logic to program analysis.
For example, the Infer program analyser [Calcagno et al. 2015], which is in produc-
tion at Facebook, is applied automatically on a daily basis to hundreds and sometimes
thousands of modifications made to the Facebook code bases; it uses sequential but
not concurrent separation logic. To make advanced program analysis for concurrency
which brings value to programmers in the real world is in the main an open problem,
and not an easy one.

Finally, we would like to say that CSL is but one part of work that goes on in the
broader field of concurrency verification and analysis. There is much interesting work
happening in dynamic concurrency analysis (e.g., the T-SAN tool), in symbolic model
checking for concurrent software (e.g. CBMC), in modelling weak memory (e.g., the
Herd tool), in logics and model checkers for models of distributed systems (e.g., TLA),
and on more closely related logics and tools (e.g., VCC). In this retrospective paper we
have not discussed or even referenced work other than that related to CSL, because
to do justice to the other work would take too much more time and space. But, if we
were to look at the state of the broader field in 2016 versus 2002 we would similarly
see quite a significant level of advance, particularly in tools. While that is certainly
positive and a cause for optimism, making concurrency theory+logic+tools simple and
tractable enough to be deployed is still a great challenge, and a most worthwhile one
because concurrent programs remain amongst the most difficult to understand.
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The technical column on verification presents an invited contribution by César A.
Muñoz, Aaron Dutle, Anthony Narkawicz, and Jason Upchurch at NASA Langley Re-
search Center titled Unmanned Aircraft Systems in the National Airspace System: A

Formal Methods Perspective in the July issue of the SIGLOG newsletter. In the past
few years we have seen a dramatic increase in the number of hobbyist unmanned
aircraft systems (UAS). In addition we have seen a push by several companies includ-
ing Amazon to use UAS as a package delivery mechanism. The increasing numbers
of UAS in our current airspace have introduced a new safety challenge. There have
been some high-profile incidents that were reported widely in the media. One example
was a drone being 100 feet within an commercial airliner at the JFK airport in New
York in Aug 2015, while another was a near miss at the Los Angeles airport between a
Lufthansa passenger jumbo jet and a UAS in March 2016. These are however not iso-
lated incidents. The Federal Aviation Administration (FAA) records shows that there
are hundreds of close calls between airplanes and UAS in the US airspace. Similar re-
ports have been documented in the UK and Europe. This safety concern has prompted
the development of a detect and avoid capability for the UAS that is designed to avoid
aircraft in its vicinity. The article presents the work being done at the NASA Langley
Research Center Formal Methods group in Hampton Virigina. I am very excited for
this article to appear in the SIGLOG newsletter. This article I believe will be of inter-
est to people not only in the logic, formal methods, and verification community but a
broader and more general audience as well.
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As the technological and operational capabilities of unmanned aircraft systems (UAS) have grown, so too
have international efforts to integrate UAS into civil airspace. However, one of the major concerns that
must be addressed in realizing this integration is that of safety. For example, UAS lack an on-board pilot to
comply with the legal requirement that pilots see and avoid other aircraft. This requirement has motivated
the development of a detect and avoid (DAA) capability for UAS that provides situational awareness and
maneuver guidance to UAS operators to aid them in avoiding and remaining well clear of other aircraft in
the airspace. The NASA Langley Research Center Formal Methods group has played a fundamental role in
the development of this capability. This article gives a selected survey of the formal methods work conducted
in support of the development of a DAA concept for UAS. This work includes specification of low-level and
high-level functional requirements, formal verification of algorithms, and rigorous validation of software
implementations.

1. INTRODUCTION
In their 2013 economic report, the Association for Unmanned Vehicle Systems Inter-
national (AUVSI) [Jenkins and Vasigh 2013] projected the cumulative impact of the
Unmanned Aircraft Systems (UAS) industry on the US economy between 2015 and
2025 to be more than US $80 billion and the generation of more than one hundred
thousand jobs. As the availability of and applications for UAS grow in the US and
worldwide, there have been concerted efforts by stakeholders throughout the inter-
national community aimed at addressing the problem of safely integrating UAS into
standard airspace operations. NASA’s Unmanned Aircraft Systems Integration in the
National Airspace System (UAS in the NAS) project aims to developing key capabili-
ties to enable routine and safe access for public and civil use of UAS in non-segregated
airspace operations.

One of the major challenges to the safe integration of UAS into the NAS is the lack of
an on-board pilot to comply with particular US and international legal requirements.
In manned aircraft operations on-board pilots have, in part, the responsibility for not
“operating an aircraft so close to another aircraft as to create a collision hazard” [Inter-
national Civil Aviation Organization (ICAO) 2005a; US Code of Federal Regulations
1967a], “to see and avoid other aircraft” [International Civil Aviation Organization
(ICAO) 2005b; US Code of Federal Regulations 1967b], and when complying with the
particular rules addressing right-of-way, on-board pilots “may not pass over, under,
or ahead [of the right-of-way aircraft] unless well clear” [International Civil Aviation
Organization (ICAO) 2005b; US Code of Federal Regulations 1967b]. To address the
safety challenge and establish parallel requirements for UAS, the final report of the
Federal Aviation Administration (FAA) Sense and Avoid (SAA) Workshop [FAA Spon-
sored Sense and Avoid Workshop 2009] defined the concept of sense and avoid as “the
capability of a UAS to remain well clear from and avoid collisions with other airborne
traffic.” This definition has been proposed as a means of compliance with the preced-
ing legal requirements. In the case of manned aircraft operations, the ability to remain
well clear and see and avoid other aircraft depends upon the perception and judgement
of the human pilot. In absence of an on-board pilot, there is a need for a formal under-
standing of the notion of well-clear, which resolves this ambiguity and is appropriate
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for integrated UAS operations [Crück and Lygeros 2007; Coulter 2009; Tomasello and
Haddon 2011; Weibel et al. 2011; Adaska 2012; Theunissen et al. 2014; Consiglio et al.
2012]. In recent years, efforts to provide such a definition have been underway.

In 2011, the Office of the Under Secretary of Defense for Acquisition, Technology, and
Logistics established the UAS Sense and Avoid Science and Research Panel (SARP)
and charged it with making a recommendation for a quantitative definition of well
clear. In 2013, the RTCA organization established Special Committee 228 (SC-228) to
provide technical guidance to the FAA for defining minimum operational performance
standards for a UAS sense and avoid concept, which is now called detect and avoid,
based on the quantitative definition of well-clear recommended by the UAS SARP. The
NASA Langley Research Center (LaRC) Formal Methods group closely collaborated
with the UAS SARP to both identify a mathematical definition of well clear that was
appropriate for UAS operations and verify that it satisfied operational requirements.
The LaRC Formal Methods group is currently participating in the RTCA SC-228, and
has responsibility for the specification, development, and verification of a reference
implementation of the algorithms that support the overall UAS DAA concept. This
article presents an overview of the research undertaken by the LaRC Formal Methods
group while collaborating with these groups, and addresses some of the key technical
challenges in Formal Methods research in the context of the development and safety
analysis of advanced air traffic management concepts.

The mathematical formulas and theorems presented in the subsequent sections have
been formally specified and verified in the Prototype Verification System (PVS) [Owre
et al. 1992].1 However, to make the article accessible to a broader audience, the formu-
las and theorems herein are expressed in mathematical notation instead of concrete
PVS syntax. Furthermore, the states of the aircraft pair of interest, denoted ownship
and intruder, are represented by position and velocity vectors in a local East, North, Up
(ENU) Cartesian coordinate system. This coordinate system is based on the orthogo-
nal projection of the ownship and intruder geodesic coordinates onto a plane tangent to
the projected ownship position on the surface of the earth. For notational convenience,
horizontal and vertical components of a three-dimensional vector are represented by
a two-dimensional vector and a scalar, respectively, and these components are given
in a relative coordinate system, where the intruder is at the origin, and the ownship
moves relative to the intruder. Letters in bold-face, e.g., v, s, denote two-dimensional
vectors. Finally, vector operations such as addition, subtraction, scalar multiplication,
dot product, i.e., s · v ⌘ s

x

v
x

+ s
y

v
y

, the square of a vector, i.e., s2 ⌘ s · s, and the norm
of a vector, i.e., ksk ⌘

p
s2, are defined in a two-dimensional Euclidean geometry.

2. WELL-CLEAR VOLUME
Consiglio et al. proposed a UAS detect and avoid concept where the well-clear notion
is defined by a protected volume around the UAS [Consiglio et al. 2012]. If no traffic
aircraft is located inside this volume, the UAS is considered to be well clear. A key idea
in this proposal is that the protected volume is assumed to be large enough to avoid
resolution advisories from a collision avoidance system, but small enough to avoid
disruption to traffic flow. Subsequently, several candidate definitions of the well-clear
volume were proposed to the UAS SARP, and they were analyzed with respect to these
conceptual requirements as well as other operational requirements [Cook et al. 2015].

The definition of the well-clear volume ultimately recommended by the UAS SARP,
and adopted by RTCA SC-228, is a boolean formula based on the second generation
of the Traffic Alerting and Collision Avoidance System (TCAS II) Resolution Advisory

1For further information on this formal development, the reader is referred to the directories TCASII,
WellClear, and DAIDALUS available in the NASA PVS Library (https://github.com/nasa/pvslib).
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(RA) detection logic. In particular, the well-clear volume is defined by a predicate on
the relative position and velocity vectors of the ownship and intruder at the current
time. This predicate determines that two aircraft are well clear of each other when
computed distance and time functions fall outside a set of predefined threshold values.
The particular distance and time functions used in the definition of the well-clear vol-
ume are based on those used in the TCAS II RA detection logic [Muñoz et al. 2013] and
are discussed in the subsequent presentation.

A well-clear violation is defined as a situation when there is both a horizontal and a
vertical violation. That is, the predicate defining the well-clear volume is a conjunction
of two predicates, one representing the horizontal dimension and the other represent-
ing the vertical dimension, as given in Formula (1).

WCV(s, s
z

,v, v
z

) ⌘ HWCV(s,v) ^ VWCV(s
z

, v
z

), (1)

Here s,v 2 R2 are the respective relative horizontal position and velocity vectors of
the aircraft pair, and s

z

, v
z

2 R are the respective relative vertical position and veloc-
ity of the aircraft pair. The horizontal and vertical violation predicates are defined in
Formula (2) and Formula (3), respectively.

HWCV(s,v) ⌘ ksk  DMOD _ (HMDF(s,v) ^ 0  ⌧mod(s,v)  TAUMOD), (2)
VWCV(s

z

, v
z

) ⌘ |s
z

|  ZTHR _ 0  tcoa(sz, vz)  TCOA, (3)
where TAUMOD and DMOD are horizontal time and distance thresholds, respectively, and
TCOA and ZTHR are vertical time and distance thresholds, respectively. The predicate
HMDF refers to the horizontal miss-distance filter and is defined as in Formula (4).

HMDF(s,v) ⌘ dcpa(s,v)  HMD, (4)
where HMD is the horizontal miss-distance threshold and is typically set to the same
value as DMOD. The distance function dcpa computes the projected horizontal distance
between the aircraft at their closest point of approach in the horizontal dimension, as-
suming constant relative horizontal velocity v, and is formally defined in Formula (5).

dcpa(s,v) ⌘ ks+ tcpa(s,v)vk. (5)
The time function tcpa in Formula (5) is the time to closest point of approach, and is
defined as

tcpa(s,v) ⌘
⇢
� s·v

v2 if kvk 6= 0,
0 otherwise,

(6)

where the inequality s · v < 0 holds when the aircraft are horizontally converging,
s ·v > 0 holds when the aircraft are horizontally diverging, and s ·v equals 0 when the
aircraft are at their horizontal closest point of approach.

The time function ⌧mod (modified tau) was introduced in the TCAS II RA logic [Ham-
mer 1996]. In the vector notation used in this article, modified tau is defined in For-
mula (7).

⌧mod(s,v) ⌘
(

DMOD2�s2

s·v if s · v < 0,
�1 otherwise.

(7)

The time function tcoa computes the time to co-altitude, assuming constant relative
vertical speed v

z

, and is defined in Formula (8).

tcoa(sz, vz) ⌘
(
� sz

vz
if s

z

v
z

< 0,

�1 otherwise.
(8)
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Fig. 1. Top View of Well-Clear Volume

In a way similar to the horizontal case, the product s
z

v
z

characterizes whether the
aircraft are vertically diverging, i.e., s

z

v
z

> 0, or vertically converging, i.e., s
z

v
z

<
0. For completeness, time to co-altitude is defined as �1 when the aircraft are not
vertically converging.

The values of the distance and time thresholds recommended by the UAS
SARP [Cook et al. 2015] and adopted by the RTCA SC-228 are DMOD = HMD = 4000 ft,
ZTHR = 450 ft, TAUMOD = 35 s, and TCOA = 0 s. The shaded area in Figure 1 illustrates
the resultant top view of the ownship’s well-clear volume with respect to an intruder
aircraft for an example encounter. Any traffic aircraft located inside this area with the
same velocity vector as the intruder aircraft will be in well-clear violation with the
UAS. The diameter of the circular base of the well-clear volume is DMOD. The length of
the elongated shape depends on TAUMOD. The shape is elongated in the direction of the
relative velocity vector.

For arbitrary values of DMOD, ZTHR, TAUMOD, and TCOA, with HMD = DMOD, Formula (1)
satisfies several operational requirements [Muñoz et al. 2014]. For instance, in a pair-
wise encounter, the ownship and intruder aircraft make the same determination of
their well-clear status. That, both aircraft are simultaneously aware of an in agree-
ment on a well-clear violation. This property is called symmetry, and it is formally
stated in Theorem 2.1.

THEOREM 2.1 (SYMMETRY). For all relative states s, s
z

,v, v
z

, WCV(s, s
z

,v, v
z

) =
WCV(�s,�s

z

,�v,�v
z

).

Another important property states that for straight line trajectories there is at most
one time interval where the aircraft are not well clear. This property is called lo-
cal convexity, and it enables the definition of an alerting algorithm that, in a non-
maneuvering encounter, continuously alerts a predicted well-clear violation until the
violation disappears. Once the violation disappears, it does not reappear unless the
aircraft maneuver. This property is formally stated in Theorem 2.2.

THEOREM 2.2 (LOCAL CONVEXITY). For all relative states s, s
z

,v, v
z

, if there are
times 0  t1  t2 such that WCV(s+t1v, sz+t1vz,v, vz) and WCV(s+t2v, sz+t2vz,v, vz),
then for all times t1  t  t2, WCV(s+ tv, s

z

+ tv
z

,v, v
z

).
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The well-clear volume defined by Formula (1) assumes perfect aircraft state informa-
tion. To accomodate for uncertainty in the position and velocity information, the RTCA
SC-228 requirements for the well-clear alerting logic allows for the use of a larger set
of threshold values within some specified ranges, giving an extended well-clear volume.
This extended well-clear volume is characterized by a predicate WCV⇤ defined by For-
mula (1), using parameters DMOD⇤ � DMOD, HMD⇤ � HMD, ZTHR⇤ � ZTHR, TAUMOD⇤ � TAUMOD,
and TCOA⇤ � TCOA. Theorem 2.3 formally states that the well-clear volume instanti-
ated with the RTCA SC-228 standard threshold values is safely included in any of its
extensions.

THEOREM 2.3 (EXTENSION). For all relative states s, s
z

,v, v
z

, WCV(s, s
z

,v, v
z

) =)
WCV⇤(s, s

z

,v, v
z

).

The extension property enables the definition of formally verified alerting and maneu-
vering algorithms that completely protect against the violation of the standard well-
clear volume by using a more conservative definition.

3. WELL-CLEAR AND TCAS II INTEROPERABILITY
TCAS is a family of airborne devices that are designed to reduce the risk of mid-air
collisions between aircraft equipped with operating transponders. TCAS II [RTCA SC-
147 2009], the current generation of TCAS devices, is mandated in the US for aircraft
with greater than 30 seats or a maximum takeoff weight greater than 33,000 pounds.
Although not required, TCAS II is also installed on many turbine-powered general
aviation aircraft. TCAS II provides resolution advisories (RAs), which are visual and
vocalized alerts that direct pilots to maintain or increase vertical separation with in-
truders that are considered collision threats.

Formula (1), which defines the UAS well-clear volume, closely follows the formula
that defines the logic of the TCAS II RA detection algorithm. The primary difference
between the well-clear volume, as defined by RTCA SC-228, and the TCAS II RA vol-
ume is in the particular choice of time and distance threshold values. The TCAS II RA
detection logic uses a lookup table indexed by the altitude of the ownship to determine
which set of threshold values to use. For some entries, e.g., for aircraft flying above
10,000 ft, the TCAS II RA threshold values are higher than the well-clear threshold
values. Due to these particular instances of larger threshold values for TCAS II, the
well-clear volume is not a proper extension of the TCAS II RA volume. Hence, The-
orem 2.3 does not apply to these cases. Thus, in practice, it is possible that TCAS II
issues an RA before the ownship declares a well-clear violation. The vertical thresh-
old values in the well-clear definition are also problematic. Indeed, ZTHR and TCOA for
the well-clear volume are set to 450 ft and 0 s, respectively, and these values are al-
ways smaller than the corresponding threshold values in the TCAS II RA table. This
choice of values affects the interoperability of the UAS DAA concept with TCAS II in
encounters with high vertical closure rate [Upchurch et al. 2015].

There are operational justifications for this mismatch between the well-clear defi-
nition and the TCAS II RA threshold values. For instance, the detect and avoid con-
cept considered by RTCA SC-228 only applies to certain types of UAS and in classes
of airspace that are usually below 10,000 ft, that is, Class D, Class E, and perhaps
Class G airspace. Additionally, the negative effects of this mismatch, i.e., TCAS II RAs
preceding well-clear violations, may be mitigated by the use of extended well-clear
volumes in the alerting and maneuvering algorithms, which are also part of the RTCA
SC-228 UAS detect and avoid concept. Theorem 3.1 states that there are extended well
clear volumes that properly include the TCAS II RA volume.
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THEOREM 3.1 (INCLUSION). Let HMD⇤ = DMOD⇤, TAUMOD⇤ = TCOA⇤, and ZTHR⇤ be
threshold values larger than the corresponding TCAS II RA threshold values. For all
relative states s, s

z

,v, v
z

, TCASII RA(s, s
z

,v, v
z

) =) WCV⇤(s, s
z

,v, v
z

).

Despite Theorem 3.1, it has been observed in flight tests that it is still possible for
TCAS II to issue an RA before a violation of an extended well-clear volume. The reason
for this apparent inconsistency is that Theorem 3.1 assumes that the same state infor-
mation, in vector form, is available to both systems, yet this is not the case. In the case
of the well-clear concept, state information in vector form is readily available through
modern global positioning systems. On the other hand, TCAS II assumes that aircraft
are equipped with active transponders, and the lack of reliable vector information is
compensated for by a sophisticated tracking system. This tracking system is a key
component of the TCAS II RA system, and depending on the quality of the range rate
estimate computed by the tracker and other conditions, the TCAS II RA system may
disable the use of the horizontal miss distance filter in Formula (2), i.e., HMDF(s,v)
is considered to be true, leading to the case of TCAS II RAs preceding violation of the
extended well-clear volume.

4. DAIDALUS
The RTCA SC-228 Minimum Operational Performance Standards (MOPS) for Un-
manned Aircraft Systems includes a reference implementation of DAA algorithms that
assist remote pilots by providing situational awareness of proximity to other aircraft
in the airspace. This reference implementation, called DAIDALUS (Detect & Avoid
Alerting Logic for Unmanned Systems [Muñoz et al. 2015], is being developed by the
LaRC Formal Methods group in support of NASA’s Safe Autonomous System Opera-
tions (SASO) project. The DAIDALUS source code is available in both C++ and Java
under NASA’s Open Source Agreement2.

The algorithms contained in DAIDALUS compute: (1) predictions of well-clear viola-
tions between the ownship and a given intruder aircraft, (2) maneuver guidance for the
ownship to maintain or regain well-clear status with respect to all traffic aircraft, and
(3) an alert level representing the severity of a potential well-clear violation between
the ownship and a given intruder aircraft. A fundamental element of DAIDALUS is
the algorithm that computes the time interval of violation for a non-maneuvering en-
counter. This algorithm, called wc interval, has as inputs a relative aircraft state and
a non-empty lookahead time interval [B, T ], with 0  B < T . It returns the time in-
terval [tin, tout], which corresponding to the interval of a predicted well-clear violation,
assuming constant-velocity trajectories. The returned interval is empty if no such vio-
lation is predicted. Theorem 4.1 states that wc interval is correct and complete.

THEOREM 4.1 (CORRECT AND COMPLETE). For all relative states s, s
z

,v, v
z

and
times B, T , with 0  B < T , let [tin, tout] be the time interval returned by
wc interval(s, s

z

,v, v
z

, B, T ) and t be a time in [B, T ], then WCV(s + tv, s
z

+ tv
z

,v, v
z

)
if and only if t 2 [tin, tout].

The local convexity property given by Theorem 2.2 is a necessary condition for the
existence of an algorithm, such as wc interval, that satisfies Theorem 4.1. Without
local convexity, either one of the implications in the theorem must be removed.

The algorithms that comprise DAIDALUS are specified in PVS, and a large number
of their functional requirements, such as Theorem 4.1, are proven to hold in these for-
mal models of the algorithms. The DAIDALUS algorithms are implemented in Java
and C++, and the formal verification of these implementations, while possible in some

2http://github.com/nasa/wellclear.
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cases, is exceedingly difficult. The difficulty arises due to the use of floating point arith-
metic in the implementations, while the formal verification of these algorithms is done
over the real numbers. This difficulty is also partially due to the object-oriented na-
ture of these languages versus the functional PVS notation. The difficulty is further
compounded when, as in the case of DAIDALUS, the properties to be verified are them-
selves complex.

The validation of the DAIDALUS software implementation is performed using a
more pragmatic approach named model animation [Dutle et al. 2015]. While model
animation does not offer the same high level of safety assurance as a complete for-
mal verification, it addresses the numerical issues in practical way, while still offering
strong assurance that the implemented software performs to its specification. Three
elements are required in order to implement the technique: (1) there must be an ex-
ecutable formal model of the software, which has been verified to possess the desired
properties of the actual software, (2) the software to be assessed needs to be a close
translation from the formal specification into the desired language, and (3) a collection
of representative test cases must be selected in some manner decided by the user. Each
test case is then evaluated using the formal model and the software implementation,
and the results are compared. If the results are sufficiently close for an acceptable
number of the test cases, then the software is considered to faithfully implement the
formal model. However, there are details which present technical challenges in the
model animation process. The algorithms in DAIDALUS use mathematical functions
such as roots, trigonometric, and inverse trigonometric functions. Due to the presence
of irrational and transcendental numbers, the outputs computed by these algorithms
are not exact. Nonetheless, other than the presence some of these non-computable
functions, the formal specifications of the DAIDALUS algorithms are executable using
the PVS ground evaluator. In order to fully execute these algorithms, PVS includes an
animation tool called PVSio [Muñoz 2003], which extends the ground evaluator, no-
tably by providing support for semantic attachments; a semantic attachment is a way
to replace a PVS function call with a call to a trusted oracle. In its default mode, PV-
Sio replaces non-computable mathematical functions with internal LISP floating point
functions. When more precision is needed, or when floating point evaluation must be
avoided, these standard functions are replaced with a collection of attachments that
are formally verified in PVS to be correct up to a given, but arbitrary, precision.

Other fundamental model animation design decisions relate to the selection of a
proper collection of test cases, how to determine when outputs are “sufficiently close,”
and how many disagreements between the software and the model are acceptable. The
selection of a set of test cases for this method can be done in any number of ways.
Test cases might be selected to ensure some code coverage criteria are met, or a large
number of random cases may be chosen to allow for a wide variety of inputs to be
generated, or other desired criteria may go into the selection process. In the case of as-
sessing the DAA functionality of DAIDALUS, the test set chosen began as a collection
of 95 aircraft encounter scenarios, which were developed jointly by the USAF, MIT Lin-
coln Laboratory, and NASA during the UAS SARP activity. These scenarios represent
a suite of stressing cases which were designed to be difficult cases for the well-clear
logic. Throughout the DAIDALUS development and assessment process, a number of
additional stressing scenarios have been provided by the FAA, and others, and added
to the test set.

For some of the functionality provided by DAIDALUS, testing whether the formal
models and their reference implementations agree or not is straightforward. For ex-
ample, the well-clear violation logic computes a boolean value indicating the well-clear
status between the ownship and an intruder aircraft. Testing if this logic is correctly
implemented in software amounts to checking if the same boolean value is computed
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in both the formal model and the software implementation. However, for algorithms
that compute a numerical value, the verification is less straightforward. In such cases,
even very close outputs might be different due to numerical approximations. For these
numerical differences, an allowable tolerance for each particular output is determined.
If the difference between the formal model and the implementation is within this tol-
erance, then the two are declared to be in agreement. These tolerances are determined
on a case-by-case basis, based on the needed accuracy of the output. For example, if
the output is a time value intended to be displayed to an operator in whole number
seconds then a tolerance for such a value might be set to 0.5 seconds. Furthermore, if
the output is a distance based on ADS-B, then a tolerance of one meter might be suf-
ficient, since the guaranteed accuracy of ADS-B is within approximately five meters.
The choices made for these tolerances also directly affect the number of cases in which
the software and formal model disagree, which is the final criterion for determining
whether or not they agree, overall.

In the case of DAIDALUS, this validation procedure is being performed in conjunc-
tion with the development of the software. As such, the procedure not only validates
that the software is in agreement with its formal model, but also reveals places where
the software must be modified to be in closer agreement with its formal model. At
each step in this iterative process, the DAIDALUS software implementation is brought
closer to matching its formal model in all of its functionality, thus providing a high level
of assurance that the implemented software retains the safety properties proven in the
formal model.

5. CONCLUSION
Motivated by the safety-critical nature of a detect and avoid concept and the corre-
sponding need for strong assurances and mathematical guarantees, Formal Methods
research has contributed to the formal development of a DAA concept for UAS. The use
of Formal Methods in the DAA problem includes a formal definition of the well-clear
violation volume, formal proofs of its key properties, formal specification and verifica-
tion of DAA algorithms, and the rigorous validation of the software implementation
of these algorithms against their formal specifications. All formal specifications and
proofs supporting this work are written and mechanically verified in the interactive
theorem prover, PVS.

The application of Formal Methods to the safety analysis of air traffic management
systems faces technical challenges common to complex cyber-physical systems (CPS).
Chief among these challenges is the interaction of these systems with the physical en-
vironment that yields mathematical models with both continuous and discrete behav-
iors. Formally proving properties involving continuous mathematics, such non-linear
arithmetic, in particular, is a well-known problem in automated deduction. As part
of this research effort, several automated decision and semi-decision procedures for
dealing with different kinds of non-linear real arithmetic problems have been devel-
oped [Narkawicz et al. 2015; Moscato et al. 2015; Denman and Muñoz 2014; Narkawicz
and Muñoz 2014; Muñoz and Narkawicz 2013]. Most of these procedures are formally
verified and are available as proof-producing automated strategies in the PVS theorem
prover.

The formal verification of software implementations of a CPS is a major endeavor,
even when the algorithms that are implemented have been formally verified. The main
difficulty arises from the fact that modern programming languages use floating point
arithmetic, while formal verification is usually performed over the real numbers. Fur-
thermore, there is a large semantic gap between modern programming languages and
the functional notation used in formal tools such as PVS. In the research discussed
in this paper, model animation is used as a practical approach to the validation of
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numerical software. Model animation compares computations performed in the soft-
ware implementations against those symbolically evaluated to an arbitrary precision
on the corresponding formal models. While this approach does not provide an absolute
guarantee that the software is correct, it increases the confidence that the formal mod-
els are faithfully implemented in code. Finally, air traffic management systems are
unique in many aspects. For instance, these systems involve human and automated
elements and these elements are often subject to strict operational and legal require-
ments. These requirements restrict the design space of operational concepts, such as
DAA for UAS. More importantly, new concepts and algorithms have to support an
incremental evolution of the airspace system on a global scale. Thus, solutions may re-
sult which are non-optimal from a theoretical point of view, or which may have complex
verification issues due to legacy systems such as TCAS. This article has presented a
survey of Formal Methods research and applications to the practical problem of safely
integrating UAS into the NAS, a design space thus constrained by requirements for
safety, interoperability with legacy systems, regulatory compliance, and public trust.
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Mariano Moscato, César Muñoz, and Andrew Smith. 2015. Affine Arithmetic and Applications to Real-
Number Proving. In Proceedings of the 6th International Conference on Interactive Theorem Proving
(ITP 2015) (Lecture Notes in Computer Science), Christian Urban and Xingyuan Zhang (Eds.), Vol. 9236.
Springer, Nanjing, China.

ACM SIGLOG News 75 July 2016, Vol. 3, No. 3
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REP

CONFERENCE REPORTS
JORGE A PÉREZ, University of Groningen, The Netherlands
j.a.perez@rug.nl

This installment of the conference report column includes a report by Hugo Torres
Vieira (IMT School for Advanced Studies Lucca, Italy) on DisCoTec 2016, a which took
place in Heraklion, Greece on June 6-9, 2016.1

As Hugo describes in his report, DisCoTec 2016 consisted of three conferences (CO-
ORDINATION, DAIS, and FORTE) and two co-located workshops (ICE and RTPBD),
all of them concerning recent research on distributed computing at large. The keynote
lectures and contributed talks in these scientific events covered a wide range of topics
of broad interest to the SIGLOG community, including: coordination models and lan-
guages, distributed applications and interoperable systems, and formal techniques for
distributed objects, components and systems.

I am most grateful to Hugo for his availability and detailed report.
I look forward to receive your personal impressions and/or reports on conferences

and meetings broadly related to SIGLOG. I will also be pleased to hearing your ideas
and suggestions for future installments of the column.

1See http://2016.discotec.org.
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DisCoTec 2016 Conference Report

Hugo Torres Vieira, IMT School for Advanced Studies Lucca, Italy

The 11th International Federated Conference on Distributed Computing Techniques
(DisCoTec 2016) took place in Heraklion, Crete (Greece) from June 6 to June 9, 2016.
DisCoTec has gathered for the past 11 years three main conferences, that previously
where held separately, and hosts co-located workshops with an unifying theme on dis-
tributed computing, encompassing research originating in different communities. The
main conferences are:

— The International Conference on Coordination Models and Languages (COORDINA-
TION, 18th edition);

— The International Conference on Distributed Applications and Interoperable Sys-
tems (DAIS, 16th edition); and

— The International Conference on Formal Techniques for Distributed Objects, Compo-
nents and Systems (FORTE, 36th edition).

Co-located workshops were Interaction and Concurrency Experience (ICE, 9th edition)
and the Final Public Workshop from LeanBigData and CoherentPaaS (RTPBD).

COORDINATION focuses on techniques that address interaction patterns and
mechanisms at the base of collaboration in distributed systems. The 2016 edition
included presentations targeting issues such as models for the Internet of Things,
bridging models and implementations, techniques for ensuring security concerns and
communication reliability, among others. The keynote speaker Vijay Saraswat (IBM
TJ Watson Research Lab, USA) talked about Logical and Imperative Calculi for Dis-
tributed Coordination, namely Concurrent Constraint Programming (CCP) and X10.
Vijay presented CCP as a foundation for concurrent, compositional computing, and
X10 as a foundation for resilient, distributed stateful programming.

DAIS topics revolved around issues related to the Cloud, such as Data Processing,
Computing and Resource management, among others. Tim Harris (Oracle Labs, UK)
presented the keynote What does the operating system ever do for me? System chal-
lenges in graph analytics. Tim addressed some research efforts that aim at the ex-
ploitation of hardware specific information at the level of the distribution of the work
load among threads, as well as the allocation of memory and threads, and how such
fine-tuning can lead to the development of OS principles.

FORTE included sessions dedicated to verification and testing, formal methods in
practice, session types, and expressiveness, among others. The keynote speaker Catus-
cia Palamidessi (INRIA, France) presented Verifying Generalized Differential Privacy
in Concurrent Systems, addressing privacy protection in the context of shared data,
namely regarding anonymity. Catuscia showed how k-anonymity falls short in ensur-
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ing anonymity, and addressed other techniques such as randomization and noise in-
sertion, together with issues specific to concurrent systems.

The DisCoTec conference series includes an award for best paper. The 2016 edition
award went to Enhanced Energy Efficiency with the Actor Model on Heterogeneous Ar-
chitectures by Yaroslav Hayduk, Anita Sobe and Pascal Felber. Other nominees were
On Sessions and Infinite Data by Paula Severi, Luca Padovani, Emilio Tuosto and Mar-
iangiola Dezani-Ciancaglini, and Fencing Programs with Self-Invalidation and Self-
Downgrade by Parosh Aziz Abdulla, Mohamed Faouzi Atig, Stefanos Kaxiras, Carl
Leonardsson, Alberto Ros and Yunyun Zhu.

The workshops took place after the main conferences, in the case of ICE with the
duration of one and a half days while RTPBD lasted one day. The ICE workshop has
been co-located with DisCoTec since 2010, featuring a distinguishing selection pro-
cedure that comprises interaction between authors and reviewers via a forum. The
2016 edition included a novelty regarding the disclosure of reviews of accepted papers.
Invited talks at ICE where given by Uwe Nestmann (Technische Universität Berlin,
Germany), who talked about Dynamic Causality, and by Alexandra Silva (University
College London, UK), who talked about Probabilistic NetKAT.

The conference venue was the Aquila Atlantis Hotel, where also the reception on the
first day took place, located in the terrace offering a great panoramic view of Herak-
lion’s seaside. In the second day the social dinner was held in Plaka, a small village
outside of Heraklion in an excellent location and with a very friendly atmosphere,
which allowed DisCoTec participants to enjoy a great evening.
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THIRTY-FIRST ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE
(LICS 2016)

Call for Participation
5-8 July 2016, New York City, USA
http://lics.rwth-aachen.de/lics16/
https://regmaster4.com/2016conf/LICS16/register.php

* EVENT
LICS 2016 will be hosted in New York City during July 5-8, 2016.
This event also marks the thirtieth anniversary of LICS.

* AFFILIATED WORKSHOPS
Logic Mentoring Workshop
LSB: 6th Workshop on Logic and Systems Biology
NLCS: 4th Workshop on Natural Language and Computer Science.
SR: 4th International Workshop on Strategic Reasoning.
LOLA: Syntax and Semantics of Low-Level Languages.

* ACCEPTED PAPERS
http://lics.rwth-aachen.de/lics16/accepted.html

* IMPORTANT DATES
July 5-8, 2016 - Conference
July 9-10, 2016 - Workshops

THE 2016 ALONZO CHURCH AWARD
FOR OUTSTANDING CONTRIBUTIONS TO LOGIC AND COMPUTATION

http://siglog.hosting.acm.org/wp-content/uploads/2016/05/church16.pdf
* The 2016 Alonzo Church Award for Outstanding Contributions to Logic

and Computation is given to Rajeev Alur and David Dill for their
invention of timed automata, a decidable model of real-time systems,
which combines a novel, elegant, deep theory with widespread
practical impact.
Rajeev Alur and David Dill: A theory of timed automata.
Theoretical Computer Science 126(2):183-235, 1994.

* Alur and Dill will receive the award at the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), which will be held on
July 5-8, 2016, at Columbia University, New York City, USA.

* The Award was established in 2015 by the ACM Special Interest Group
for Logic and Computation (SIGLOG), the European Association for
Theoretical Computer Science (EATCS), the European Association for
Computer Science Logic (EACSL), and the Kurt Goedel Society
(KGS). It recognises an outstanding contribution represented by a
paper or small group of papers within the past 25 years; this is the
first such award. The Award Committee consisted of Catuscia
Palamidessi, Gordon Plotkin, Wolfgang Thomas, and Moshe Vardi
(chair).

2016 GOEDEL PRIZE
http://eatcs.org/index.php/component/content/article/1-news/2280-2016-godel-prize-

* The 2016 Goedel Prize is awarded to Stephen Brookes and Peter
W. O’Hearn for their invention of Concurrent Separation Logic, as
described in the following two papers:
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- S. Brookes, A Semantics for Concurrent Separation Logic.
Theoretical Computer Science 375(1-3): 227-270 (2007)

- P. W. O’Hearn, Resources, Concurrency, and Local Reasoning.
Theoretical Computer Science 375(1-3): 271-307 (2007)

Stephen Brookes and Peter O’Hearn will receive the 2016 Goedel Prize
at the 43rd International Colloquium on Automata, Languages and
Programming (ICALP 2016), 12-15 July 2016, in Rome, Italy.

ACM SIGLOG ANNOUNCEMENT
http://siglog.acm.org

* The ACM has recently chartered a Special Interest Group on Logic and
Computation (ACM SIGLOG).

* We are pleased to announce the 2016 ACM SIGLOG election results for
the term of 1 July 2016 - 30 June 2019. The SIGLOG Chair is Prakash
Panangaden and the other officers are Luke Ong (vice-Chair), Amy
Felty (Treasurer) and Alexandra Silva (Secretary).

* The ACM-IEEE Symposium on Logic in Computer Science is the flagship
conference of SIGLOG. SIGLOG will also actively seek association
agreements with other conferences in the field. A SIGLOG newsletter
(SIGLOG News) is also published quarterly in an electronic format
with community news, technical columns, members’ feedback,
conference reports, book reviews and other items of interest to the
community.

* One can join SIGLOG by visiting
https://campus.acm.org/public/qj/gensigqj/siglist/gensigqj˙siglist.cfm
It is possible to join SIGLOG without joining ACM (the SIGLOG
membership fee is $25 and $15 for students).

DATES
* RULEML AND DECISIONCAMP 2016

Call for Participation, Call for Papers
Stony Brook, NY, 6-9 July, 2016
http://2016.ruleml.org

* SSBSS 2016
Call for Participation
8-14 July 2016, Volterra (Pisa), Tuscany, Italy

* FSTTCS 2016
Call for Papers
December 13--15, 2016, Chennai, India
http://www.fsttcs.org/
Paper submission: July 15, 2016

* ESSLLI 2017
Call for Course and Workshop Proposals
17-28 July, 2017, Toulouse, France
https://www.irit.fr/esslli2017
15 July 2016: Proposal submission deadline

* DEDUCTION MEETING/DEDUKTIONSTREFFEN 2016
Call for Papers
September 26, 2016, Alpen Adria University, Klagenfurt, Austria
Hosted by KI 2016.
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https://fg-dedsys.gi.de/dt2016.html
Early bird submission: July 15
Standard submission: August 15

* CAV 2016
Call for participation
July 17-23 2016, Hyatt Regency Toronto, Ontario, Canada
http://i-cav.org/2016/

* ILP2016 - Call For Papers
Call For Papers
September 4th - 6th, 2016, London, UK
http://ilp16.doc.ic.ac.uk
Short Paper submission: 24 July 2016

* CRV 2016
Call for Participation
https://rv2016.imag.fr/?page˙id=188
September 2016, Madrid, Spain

* DARe-16 at ECAI
Call for Participation
Date: 29 August 2016
The Hague, Netherlands
http://dare2016.yolasite.com

* ARVI COST 2016
Call for Participation
September 23-25, Madrid, Spain
https://rv2016.imag.fr/?page˙id=128

* SSS 2016
Call for Papers
Lyon, France, November 7-10, 2016
http://graal.ens-lyon.fr/ SSS16/
Abstract Submission: July 17
Paper Submission: July 24

* ICDT 2017
Call for papers
27-31 March, 2017, Venice, Italy
http://www.cs.ox.ac.uk/people/michael.benedikt/icdt17.html
Paper deadine (2nd submission cycle): September 18, 2016

RULEML AND DECISIONCAMP 2016
Call for Participation
Dates: 6-9 July, 2016
Location: New Computer Science Department Building, room 120,
Stony Brook University, New York, USA
http://2016.ruleml.org

* Invited presentations by: Richard Waldinger (2016 Herbrand Award
winner), Charles Forgy (inventor of the RETE algorithm, Bruce Silver
(book author on DMN Method and Style), Michael Kifer, Theresa Swift
and Benjamin Grosof.

* Submission Deadline (Papers/Demos/Posters) for all Open Calls: June
5th, 2016

* The RuleML 2016 Challenge is one of the highlights of the RuleML
2016 Symposium, providing a friendly competition environment for

ACM SIGLOG News 83 July 2016, Vol. 3, No. 3



innovative rule-oriented systems and applications, aimed at both
research and industry participants.
http://2016.ruleml.org/challenge

* Posters are called for about late-breaking rule topics, e.g.
domain-specific applications of rule systems. Posters should be
accompanied by high-quality, original 1-4 page extended abstracts,
which should be submitted at:
https://easychair.org/conferences/?conf=ruleml2016 (”10th
International Rule Challenge” track).

* Both PhD students and mentors are called for:
http://2016.ruleml.org/doctoral-consortium

* Industry Track will include a panel about use of rules and rule
technologies in business cases:
http://2016.ruleml.org/industry-track

* Accepted papers
http://2016.ruleml.org/list-of-accepted-papers

* Accomodation
http://2016.ruleml.org/venue-and-accommodation

3RD INT. SYNTHETIC AND SYSTEMS BIOLOGY SUMMER SCHOOL (SSBSS 2016)
Call for Participation
8-14 July 2016, Volterra (Pisa), Tuscany, Italy

* The 3rd International Synthetic and Systems Biology Summer School is
a great opportunity to exchange ideas and information with
colleagues and peers from around the world and discover the latest
trends and new exciting results in Synthetic and Systems Biology.

* Further details: ssbss.school@gmail.com
http://www.taosciences.it/ssbss/

* Previous Editions:
SSBSS 2015 http://www.taosciences.it/ssbss2015/
SSBSS 2014 http://www.taosciences.it/ssbss2014/

36TH FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER
SCIENCE (FSTTCS 2016)
Call for Papers
December 13--15, 2016, Chennai, India
http://www.fsttcs.org/

* IARCS, the Indian Association for Research in Computing Science,
announces the 36th Foundations of Software Technology and
Theoretical Computer Science (FSTTCS) conference at Chennai
Mathematical Institute, Chennai, India. The FSTTCS conference is a
forum for presenting original results in foundational aspects of
Computer Science and Software Technology.

* Important Dates
Paper submission: July 15, 2016
Notification to authors: September 15, 2016
Camera-ready version due: October 15, 2016
Conference: December 13-15, 2016

* Scope
- Algorithms & data structures, Automata & formal languages
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- Algorithmic graph theory & combinatorics
- Models of concurrent, distributed mobile systems
- Approximation algorithms, Cryptography & security
- Combinatorial optimization, Game theory & mechanism design
- Communication complexity, Logic in computer science
- Computational complexity, Model theory & temporal logics
- Computational geometry, Computational biology
- Computational learning theory
- Models of timed, reactive, hybrid & stochastics systems
- Parallel, distributed & online algorithms
- Principles & semantics of programming languages
- Parameterized complexity, Program analysis & transformation
- Proof complexity, Specification, verification & synthesis
- Quantum computing, Theorem proving & model checking
- Randomness in computing, Type systems, type theory & calculi

* Further details:
http://www.fsttcs.org/

29TH EUROPEAN SUMMER SCHOOL IN LOGIC, LANGUAGE AND INFORMATION
(ESSLLI 2017)

Call for Course and Workshop Proposals
17-28 July, 2017, Toulouse, France
https://www.irit.fr/esslli2017
Call for Course and Workshop Proposals
17-28 July, 2017, Toulouse, France
https://www.irit.fr/esslli2017

* IMPORTANT DATES (with extended deadline)
15 July 2016: Proposal submission deadline
30 September 2016: Notification

* SUBMISSION PORTAL
Please submit your proposals here:
https://easychair.org/conferences/?conf=3Desslli2017

* TOPICS AND FORMAT Proposals for courses and workshops at ESSLLI 2017
are invited in all areas of Logic, Linguistics and Computing
Sciences. Cross-disciplinary and innovative topics are particularly
encouraged. Each course and workshop will consist of five 90 minute
sessions, offered daily (Monday-Friday) in a single week. The EACSL
will sponsor for one course or workshop in the areas of Logic and
Computation.

* PROGRAMME COMMITTEE
Chair:

Shravan Vasishth, Universitaet Potsdam
Local co-chair:

Philippe Balbiani, IRIT, Toulouse
Language and Computation:

Sebastian Pado, Universitaet Stuttgart
Mehrnoosh Sadrzadeh, University of London

Language and Logic:
Denis Bonnay, l’Universite Paris Ouest
Jessica Rett, UCLA

Logic and Computation:
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Tomer Kotek, Technische Universitaet Wien
Anna Zamansky, University of Haifa

* FURTHER INFORMATION:
Please send any queries you may have to vasishth dot shravan at gmail
dot com.

30th DEDUCTION MEETING/DEDUKTIONSTREFFEN 2016
Call for Papers
September 26, 2016, Alpen Adria University, Klagenfurt, Austria
Hosted by KI 2016.
https://fg-dedsys.gi.de/dt2016.html

* The annual meeting Deduktionstreffen is the prime activity of the
Interest Group for Deduction Systems (FGDedSys) of the German
Informatics Society.
It is a meeting with a familiar, friendly atmosphere, where all
members and friends of the German deduction community are invited to
present, discuss and share their latest research results and ideas
in an informal setting.

* A particular focus of the Deduktionstreffen is on young researchers
and students, who are particularly encouraged to present their
ongoing research projects to a wider audience. Another goal of the
meeting is stimulate networking effects and to foster collaborative
research projects.

* Invited Speakers:
- Armin Biere
- Cezary Kaliszyk

* We welcome contributions on all theoretical, experimental and
application aspects of deduction. Accepted abstracts will be
presented as 5min teaser talks followed by a poster presentation.

* Important dates:
- Early bird submission: July 15
- Standard submission: August 15

28TH INTERNATIONAL CONFERENCE ON COMPUTER AIDED VERIFICATION (CAV 2016)
Call for Participation
July 17-23, 2016, Hyatt Regency Toronto, Ontario, Canada
http://i-cav.org/2016/

* Highlights
- 46 regular papers, 12 tool papers
- Four invited talks, four invited tutorials
- Talk by a winner of the 2016 CAV award

* Registration deadline
- Early registration deadline: June 10, 2016
- Register at https://regmaster4.com/2016conf/CAV16/register.php

* Conference program
Available at http://i-cav.org/2016/program/

* Invited talks
- Gilles Barthe (IMDEA Software Institute)
Computer-aided Cryptography

- Gerwin Klein (NICTA and University of New South Wales)
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Scaling Up - From Trustworthy seL4 to Trustworthy Systems
- Moshe Vardi (Rice University)

Constrained Sampling and Counting
- A winner of the 2016 CAV Award

(To be announced at the conference)
* Invited tutorials

- Parosh Abdulla (Uppsala University)
Small Models in Parameterized Verification

- Vitaly Chipounov (EPFL)
The S2E Platform: Design, Implementation, and Applications

- Paulo Tabuada (UCLA)
Synthesizing Robust Cyber-Physical Systems

- Martin Vechev and Pavol Bielek (ETH)
Machine Learning for Programs

* Associated workshops
- NSV: 9th International Workshop on Numerical Software Verification

http://nsv2016.pages.ist.ac.at/
- VSTTE: 8th Working Conference on Verified Software: Theories,

Tools, and Experiments
http://www.cs.toronto.edu/˜chechik/vstte16/

- SYNT: 5th Workshop on Synthesis
http://formal.epfl.ch/synt/2016/

- (EC)2: 9th International Workshop on Exploiting Concurrency
Efficiently and Correctly
http://ecee.colorado.edu/pavol/ec2-2016/

- HCCV: Workshop on High-Consequence Control Verification
http://www.sandia.gov/hccv/

- VMW: Verification Mentoring Workshop
http://i-cav.org/2016/vmw/

* Conference chairs
Swarat Chaudhuri (Rice University)
Azadeh Farzan (University of Toronto)

THE 26TH INTERNATIONAL CONFERENCE ON INDUCTIVE LOGIC PROGRAMMING
(ILP2016)

Call For Papers
September 4th - 6th, 2016, London, UK
http://ilp16.doc.ic.ac.uk

* AIMS: The ILP conference series is the premier international forum
for learning from structured relational data. Originally focusing on
the induction of logic programs, over the years it has expanded its
research horizon significantly and welcomes contributions to all
aspects of learning in logic, multi-relational data mining,
statistical relational learning, graph and tree mining, learning in
other (non-propositional) logic-based knowledge representation
frameworks, exploring intersections to statistical learning and
other probabilistic approaches.

* TOPICS OF INTEREST include:
- Theoretical aspects: logical-foundations of learning;
- computational/statistical learning theory; specialisation and
- generalisation; probabilistic logic-based learning; graph and tree
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- mining. Representation and languages for learning: logic
- programming; Datalog;first-order logic; description logic and
- ontologies; higher-order logic; Answer Set Programming;
- probabilistic logic languages; constraint logic programming;
- knowledge graphs. Algorithms and systems: learning with
- (semi-)structured data; (semi-)supervised and unsupervised
- relational learning; relational reinforcement learning; predicate
- invention; propositionalisation approaches; multi-instance
learning;

- learning in the presence of uncertainty; meta-level learning.
- Applications of learning in: art; bioinformatics; systems biology;
- games; medical informatics; robotics; natural language processing;
- web-mining; software engineering; modelling and adaptation of
- control systems; socio-technical systems.
In addition to the above topics, ILP 2016 is also encouraging
contributions in the areas of cognitive technologies, knowledge
acquisition from big data, the cloud and crowd sourced data, deep
relational learning, as well as contributions on the application of
any of these solutions to real world problems. The conference will
host keynote talks from both industry and academia and will run the
first International ILP Competition.

* Submission guidlines: please see the conference website
* IMPORTANT DATES:

- Abstract registration: 7 May 2016
- Long paper submission: 13 May 2016
- Long Paper notification: 26 June 2016
- Short Paper submission: 24 July 2016
- Short Paper notification: 28 July 2016

* We expect there will be a special issue of the Machine Learning
Journal following the conference, which will be open for
everyone. This special issue will welcome conference submissions
from all three categories, which should be significantly revised and
extended, to meet the MLJ criteria, and will be re-reviewed by PC
members.

* CONFERENCE AND PROGRAM CO-CHAIRS:
- Alessandra Russo, Imperial College London UK
- James Cussens, University of York, UK

* ILP COMPETITION CHAIR;
Mark Law, Imperial College London, UK

* PUBLICITY CHAIR:
Krysia Broda, Imperial College London, UK

* ASSOCIATED EVENT:
3rd International Workshop on Probabilistic Logic Programming

THE 3RD INTERNATIONAL COMPETITION ON RUNTIME VERIFICATION (CRV 2016)
Call for Participation
https://rv2016.imag.fr/?page˙id=188
September 2016, Madrid, Spain

* The 3rd International Competition on Runtime Verification In
Association with COST Action ”Runtime Verification beyond
Monitoring” held with RV 2016, September 23-30 2016, Madrid, Spain
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* The main goal of CRV 2016 is to compare tools for runtime
verification. We invite and encourage the participation with
benchmarks and tools for the competition. The competition will
consist of three main tracks based on what is being monitored:
- Track on monitoring Java programs (online monitoring)
- Track on monitoring C programs (online monitoring)
- Subtrack on Generic Specifications (e.g. in LTL)
- Subtrack on Implicit Specifications (e.g. memory safety)
- Track on monitoring of traces (offline monitoring)

* The general organisation of the competition is described in the
rules document found at
http://crv.liflab.ca/CRV2016.pdf.

* To register please fill in the form at
http://goo.gl/forms/kWxFFfFCvZ.

* Please direct any enquiries to the competition co-organizers
(crv2016@crv.liflab.ca):
- Ylies Falcone (Univ. Grenoble Alpes, Inria, France),
- Sylvain Halle (Universite du Quebec a Chicoutimi, Canada),
- Giles Reger (University of Manchester, Manchester, UK).

* Expected Important Dates
May 9th Registration Opens
May 29th Benchmark Submission Deadline
June 5th Registration Closes
June 5-12th Clarifications Phase
June 19th Benchmarks Announced
July 10th Monitor Submission Deadline
August 1st Notifications
At RV 2016 Presentation of Results

THE THIRD INTERNATIONAL WORKSHOP ON ”DEFEASIBLE AND AMPLIATIVE
REASONING” (DARE 2016)

Call for Participation
29 August 2016, The Hague, Netherlands
http://dare2016.yolasite.com

* The workshop is held at the European Conference on Artificial
Intelligence (ECAI 2016)

* DARe welcomes contributions on all aspects of defeasible and
ampliative reasoning such as (but not limited to):
- Abductive and inductive reasoning
- Explanation finding, diagnosis and causal reasoning
- Inconsistency handling and exception-tolerant reasoning
- Decision-making under uncertainty and incomplete information
- Default reasoning, non-monotonic reasoning, non-monotonic logics,

conditional logics
- Specific instances and variations of ampliative and defeasible

reasoning
- Probabilistic and statistical approaches to reasoning
- Vagueness, rough sets, granularity and fuzzy-logics
- Philosophical foundations of defeasibility
- Empirical studies of reasoning
- Relationship with cognition and language
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- Contextual reasoning
- Preference-based reasoning
- Analogical reasoning
- Similarity-based reasoning
- Belief dynamics and merging
- Argumentation theory, negotiation and conflict resolution
- Heuristic and approximate reasoning
- Defeasible normative systems
- Reasoning about actions and change
- Reasoning about knowledge and belief, epistemic and doxastic logics
- Ampliative and defeasible temporal and spatial reasoning
- Computational aspects of reasoning with uncertainty
- Implementations and systems
- Applications of uncertainty in reasoning

* IMPORTANT DATES
- Submission deadline: 16 June 2016
- Notification: 28 June 2016
- Camera ready: 17 July 2016
- Early registration: 5 July 2016
- Late registration: [TBA]
- Workshop date: 30 August 2016

* WORKSHOP CO-CHAIRS
- Richard Booth (Cardiff University, United Kingdom)
- Giovanni Casini (Universite du Luxembourg)
- Szymon Klarman (Brunel University London, United Kingdom)
- Gilles Richard (Universite Paul Sabatier, France)
- Ivan Varzinczak (CRIL, Universite d’Artois, France)

* FURTHER INFORMATION. Please visit the workshop website
(http://dare2016.yolasite.com) for further information and regular
updates.

FOURTH CONFRENCE ON HIGHLIGHTS OF LOGIC, GAMES AND AUTOMATA
(HIGHLIGHTS 2016)

Call for Presentations
September 6-9, 2016, Brussels, Belgium
http://highlights-conference.org

* HIGHLIGHTS 2016 is the fourth conference on Highlights of Logic,
Games and Automata which aims at integrating the community working
in these fields. Papers from these areas are dispersed across many
conferences, which makes them difficult to follow. A visit to
Highlights conference should offer a wide picture of the latest
research in the field and a chance to meet everybody in the
community, not just those who happen to publish in one particular
proceedings volume. We encourage you to attend and present your best
work, be it already published or not, at the Highlights conference.

* Representative areas include, but are not restricted to: logic and
finite model theory, automata theory, games for logic and
verification.

* You submit a proposal for a presentation, not a paper. Hence,
submissions should have a single author, who is the speaker. Since
we expect you to present your favorite result of the year, there
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should be at most one submission per speaker. The abstract, of 1-2
pages, may include a list of coauthors. There are no formal
proceedings and we encourage submission of work presented
elsewhere. Submissions are possible through
https://easychair.org/conferences/?conf=3Dhighlights2016.

* The program will further offer three keynotes by Meena Mahajan
(Chennai), Andreas Maletti (Stuttgart), and Marc Zeitoun (Bordeaux),
two invited sessions, organised by Slawomir Lasota (Warsaw) and
Anca Muscholl (Bordeaux), and two tutorials by Benedikt Bollig
(Cachan) and Antonin Kucera (Prague).

* Important dates:
Submission deadline: June 3, 2016
Registration possible until August 7, 2016

36TH ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE
SYSTEMS (PODS 2017)

Call for Papers (1st submission cycle)
May 14-19, 2017, Raleigh, North Carolina, USA
http://www.sigmod2017.org

* PODS has two rounds of submissions (see dates below). Note that the
1st round is moved earlier compared with the previous editions of
PODS. This is to better synchronize with the two deadlines of the
ICDT conference (see
http://www.cs.ox.ac.uk/people/michael.benedikt/icdt17.html)

* TOPICS that fit the interests of the symposium include the following:
- design, semantics, query languages
- data models, data structures, algorithms for data management
- concurrency and recovery, distributed and parallel databases, cloud

computing
- model theory, logics, algebras, computational complexity
- graph databases and (semantic) Web data
- data mining, information extraction, search
- data streams
- data-centric (business) process management, workflows, web services
- incompleteness, inconsistency, uncertainty in data management
- data and knowledge integration and exchange, data provenance, views

and data warehouses, metadata management
- domain-specific databases (multi-media, scientific, spatial,

temporal, text)
- deductive databases
- data privacy and security

* PROGRAM CHAIR
Floris Geerts (University of Antwerp, BE)

* IMPORTANT DATES
- Dates for first submission cycle:

June 12, 2016, 11:59pm PST: Abstract submission
June 19, 2016, 11:59pm PST: Paper submission
August 28, 2016, 11:59pm PST: Accept/Reject/Revise notification
September 25, 2016, 11:59pm PST: Revision deadline
October 30, 2016, 11:59pm PST: Accept/Reject notification

(Revisions)
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- Dates for second submission cycle:
December 11, 2016, 11:59pm PST: Abstract submission
December 18, 2016, 11:59pm PST: Paper submission
February 26, 2017, 11:59pm PST: Accept/Reject notification
March 19, 2017, 11:59pm PST: Camera-ready deadline

* AWARDS
- Best Paper Award: An award will be given to the best submission,
as judged by the program committee.

- Best Student Paper Award: There will also be an award for the best
submission, as judged by the program committee, written by a
student or exclusively by students.

ARVI COST SUMMER SCHOOL ON RUNTIME VERIFICATION (ARVI COST 2016)
Call for Participation
September 23-25, Madrid, Spain
https://rv2016.imag.fr/?page˙id=128

* The first edition of the ARVI COST Summer School on Runtime
Verification: Branches of Practical Topics Rooted in Theory will be
co-located with the 16th International Conference on Runtime
Verification in Madrid and organised over three days with a series
of lectures from international experts in the field.

* TOPICS:
- The basics of runtime verification
- Instrumentation techniques
- Specification languages
- Monitor parametrisation
- Monitoring concurrency errors
- Performance issues of monitors
- Combination of static and dynamic analysis
- Monitoring of distributed systems
- Time-triggered monitoring

* Confirmed Speakers:
- Prof. Wolfgang Ahrendt - Chalmers University of Technology

and University of Gothenburg (Sweden)
- Prof. Ezio Bartocci - University of Vienna (Austria).
- Prof. Borzoo Bonakdarpour - University of MacMaster (Canada).
- Dr. Marius Bozga - CNRS - Verimag (France).
- Dr. Christian Colombo - University of Malta (Malta).
- Dr. Ylies Falcone - University of Grenoble (France).
- Dr. Adrian Francalanza - University of Malta (Malta).
- Dr. Klaus Havelund - NASA Jet Propulsion Laboratory (USA).
- Prof. Martin Leucker - University of Lubeck (Germany).
- Prof. Joao Lourenco - Universidade Nova de Lisboa (Portugal).
- Prof. Dejan Nikovic Technical University of Vienna (Austria).
- Prof. Gordon Pace - University of Malta (Malta).
- Dr. Giles Reger - University of Manchester (UK).

* Application Procedure and Important Dates:
Deadline for Applications: July 15, 2016.
Response to Applicants: July 20, 2016.
Online Registration and Fee payment: July 29, 2016.

* More details can be found at: https://rv2016.imag.fr/?page˙id=128.
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Enquiries can be sent to Ylies.Falcone@imag.fr or
Christian.Colombo@um.edu.mt.

18TH INTERNATIONAL SYMPOSIUM ON STABILIZATION, SAFETY, AND SECURITY OF
DISTRIBUTED SYSTEMS (SSS 2016)

Call for Papers
Lyon, France, November 7-10, 2016
http://graal.ens-lyon.fr/ SSS16/

* The Symposium on Stabilization, Safety, and Security of Distributed
Systems is an international forum for researchers and practitioners
working on the design and development of distributed systems that
guarantee specific desired properties despite adversity, or that are
able to restore the desired properties following adversarial
perturbations in the computing medium building on the principles of
self-stabilization. The symposium encourages the submission of
original contributions spanning fundamental research and practical
applications within its scope, covered by the three symposium
tracks.

* TOPICS AND TRACKS
* Track 1: Self-* and Autonomic Computing

- Self-stabilizing systems
- Self-organizing, self-managing, and self-configuring systems
- Self-optimizing and self-healing systems
- Self-protecting and self-repairing systems
- Autonomic cloud computing
- Autonomous vehicles

* Track 2: Foundations
- Theory of self-stabilization
- Distributed algorithms
- Fault-Tolerant distributed systems
- Formal methods, validation, verification, and synthesis
- Safety and security

* Track 3: Networks, Multi-Agent Systems, and Mobility
- Self-Stabilizing networks
- Peer-to-peer networks
- Sensor networks, MANETs, and wireless mesh networks
- Large and extreme scale systems
- Distributed robot systems
- Cooperating multi-agent distributed systems
- Dynamic systems and networks
- Overlay networks
- Social networks
- High-Speed networks

* IMPORTANT DATES
- Abstract Submission: July 17
- Paper Submission: July 24
- Notification: September 12
- Camera Ready Submission: September 23
- Authors Registration: September 23
- Early Registration: October 7
- Conference: November 7-10
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* Keynote Speakers
Hagit Attiya (Technion, Israel)
Joseph Halpern (Cornell University, USA)
TBA

* General Chair:
Franck Petit (Universite Pierre et Marie Curie, LIP6, France)

* Program Committee Chair:
Borzoo Bonakdarpour (McMaster University, Canada)

* Program Chairs
- Track 1: Self-* and Autonomic Computing
Stephane Devismes, co-chair (University of Grenoble, France)
Manish Parashar, co-chair (Rutgers University, USA)

- Track 2: Foundations
Vijay Garg, co-chair (University of Texas - Austin, USA)
Sergio Rajsbaum, co-chair (UNAM, Mexico)

- Track 3: Networks, Multi-Agent Systems, and Mobility
Yvonne-Anne Pignolet, co-chair (ABB Corporate Research, Switzerland)
Roger Wattenhofer, co-chair (ETH-Zurich, Switzerland)

* The program committee will select two papers for the best paper and
best student paper awards.

THE 20TH INTERNATIONAL CONFERENCE ON DATABASE THEORY (ICDT 2017)
Call for papers
27-31 March, 2017, Venice, Italy
http://www.cs.ox.ac.uk/people/michael.benedikt/icdt17.html

* The series of ICDT conferences (http://icdt.tu-dortmund.de/)
provides an international forum for the communication of research
advances on the theoretical foundations of database systems.

* ICDT has made significant changes to its submission dates, in
co-ordination with its sibling conference PODS. There are now two
submission cycles, with the first providing the possibility of
revision.

* First submission cycle:
Abstract deadline: March 18, 2016
Full paper submission deadline: March 25, 2016
Accept/Reject/Revise Notification: May 29, 2016

* Second submission cycle:
Abstract deadline: September 11, 2016
Full paper submission deadline: September 18, 2016
Notification: November 27, 2016

* Examples of relevant topics are: concurrency and recovery,
distributed and parallel databases, cloud computing, connections
between databases and knowledge representation, graph databases and
(semantic) Web data, data mining, information extraction, search,
data streams, data-centric (business) process management, workflows,
web services, incompleteness, inconsistency, uncertainty in
databases, data and knowledge integration and exchange, data
provenance, views and data warehouses, metadata management,
domain-specific databases (multi-media, scientific, spatial,
temporal, text), deductive databases, data privacy and security,
database aspects of machine learning, model theory, logics,
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algebras, computational complexity, design, semantics, query
languages, data models, data structures, algorithms for data
management.

PHD STUDENTSHIP IN SEMANTICS AND VERIFICATION OF HETEROGENEOUS PROGRAMS
* Applications are invited for a fully-funded PhD studentship within

the Theory Group at Queen Mary University of London, as part of a
project which aims to develop a unified semantic framework for
heterogeneous software systems and apply it to compositional
software compilation and verification. Cloud computing and
heterogeneous computing are widely acknowledged to dominate the
software landscape in the foreseeable future. The recent work on
System-Level Games provides a semantic framework for modelling
low-level code interactions involving resources shared between a
program and its environment. This project will apply the framework
for deriving compositional analysis techniques for the compilation
and verification of heterogeneous programs.

* All nationalities are eligible to apply for this studentship, which
will start in October 2016. The studentship is for three years, and
covers student fees as well as a tax-free stipend of 16,057 per
annum. Candidates must have a 2:1 degree or equivalent, and/or a
good MSc Degree, in Computer Science or a related discipline. The
ideal candidate should be creative and motivated in the studying of
semantics and verification of programming languages. Good coding
skills will be an advantage, and applicants will have at least good
knowledge of programming languages such as C/C++, Java, Python,
OCaml. Analytical and good communication skills are also welcome.

* The PhD supervisor will be Dr Nikos Tzevelekos. The project will be
based in the School of Electronic Engineering and Computer Science
(EECS), and the student will join a world-leading centre for
research on logical methods for reasoning about computer systems in
the Theory Group (http://theory.eecs.qmul.ac.uk/). The position will
be integrated in the EPSRC project ”System-Level Game Semantics: A
unifying framework for composing systems”, which is in collaboration
with the University of Birmingham. Informal enquiries about the
studentship can be made by email to Dr Tzevelekos
(nikos.tzevelekos@qmul.ac.uk).

* To apply, please follow the on-line process at
www.qmul.ac.uk/postgraduate/applyresearchdegrees/ click on the list
of Research Degree Subjects, select ”Computer Science”, and follow
the instructions on the right-hand side of the web page. Please note
that instead of the Research Proposal we request a Statement of
Research Interests. Your statement should answer two questions: (i)
Why are you interested in the topic described above? (ii) What
relevant experience do you have? Your statement should be brief: no
more than 500 words or one side of A4 paper. In addition we would
also like you to send a sample of your written work (e.g. excerpt
of final year dissertation or published academic paper). More
details can be found at: http://www.eecs.qmul.ac.uk/phd/how-to-apply

* The closing date for the applications is 24/07/2016.
Interviews are expected to take place the week of 25 July 2016.

ACM SIGLOG News 95 July 2016, Vol. 3, No. 3



3-YEAR POSTDOC POSITION AT HASSELT UNIVERSITY
* We have a vacancy for a 3-year postdoc position at Hasselt

University. The salary is very good and it comes with social
security, health insurance, what have you. The topic is very
flexible as long as it has to do with finite model theory,
expressive power of database query languages, in particular
query languages for novel data models such as JSON or graph
data, tractable fragments of higher-order logic is also a theme
that fits.

* The position needs to be filled by 1 January 2017 at the latest.
* The research group on Databases and Theoretical Computer

Science at Hasselt University is a leading group in the
theoretical foundations of data management. Professors are
Marc Gyssens, Bart Kuijpers, Frank Neven, and Jan Van den
Bussche

* Please email Jan Van den Bussche
(jan.vandenbussche@uhasselt.be) if you are interested.

* http://alpha.uhasselt.be/jan.vandenbussche
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