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From the Editor

Welcome to the second issue! I would like to express warmest thanks to the Column
Editors and the first external contributors.

— In his Automata Column, Mikołaj Bojańczyk takes us through a selection of open
problems in automata and logic.

— Libor Barto surveys the Constraint Satisfaction Problem in Neil Immerman’s Com-
plexity Column.

— And, in Mike Mislove’s Column on Semantics, Achim Jung shares his perspective on
teaching denotational semantics.

Do not hesitate to get in touch with the Column Editors if you would be interested in
contributing to a column. Other kinds of material related to Logic and Computation are
also most welcome, such as book reviews and reports from recent conferences. Please
email them to editor@siglog.org.

Enjoy the issue and consider entering the SIGLOG Logo competition (page 45)!

Andrzej Murawski
University of Warwick
SIGLOG News Editor
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Chair’s Letter

Wow! Perhaps not the most dignified way to start a letter, but that was my reaction
to the Federated Logic Conferences (FLoC) held this summer in Vienna as part of the
Vienna Summer of Logic. This was the largest assembly of logicians and logic-related
related researchers ever. There were 12 major conferences and over a 100 workshops
with an overall attendance of 2000 participants. Any doubts about the size and vitality
of the community are laid to rest.

SIGLOG held two launch events to announce the formation of the new SIG and to
recruit members. There was a lot of interest in SIGLOG and I am pleased to report
that at last count there were over 150 members. My goal is to reach 200 by the year’s
end. I will be visiting India, China and Japan in the coming year and plan to make a
serious effort to spread the news about SIGLOG in Asia.

I am pleased to report that the education committee has been formed and consists of
Iliano Cervesato, Joao Marcos, Brigitte Pientka, R. Ramanujam, Nicole Schweikardt
and Richard Zach. Iliano will be the chair. There was a very interesting panel organi-
zed by ASL on the role of logic in computer science education which was organized by
Richard Zach which provided a forum for some lively exchanges. Both Joao Marcos and
R. Ramanujam have announced events of interest to people interested in logic educa-
tion. These will be taking place in Brazil and India respectively. It is great to have such
a geographically diverse group.

The main initiative that I am working on with the EC and with our European part-
ner organizations (EATCS, EACSL, Kurt Gödel Society) is the establishment of major
awards for contributions to logic and computation. I am learning that not everything
can be done instantly, but it is better to do things right the first time. I am still hopeful
that these awards are not too far off.

This issue of the SIGLOG Newsletter features three columns on Automata, on Se-
mantics and on Complexity. I am very grateful to Andrzej for the great job that he is
doing to keep the issues coming out on schedule.

Prakash Panangaden
McGill University
ACM SIGLOG Chair
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AUTOMATA COLUMN
MIKOŁAJ BOJAŃCZYK, University of Warsaw
bojan@mimuw.edu.pl

Some Open Problems in Automata and Logic

The list in this paper is, of course, a personal selection of open problems that are
connected to both automata and logic. The problems are listed in no particular order.

1. CAN PARITY GAMES BE SOLVED IN POLYNOMIAL TIME?
A parity game is a two player game, of infinite duration and with perfect information,
which comes up naturally when studying automata and logics for infinite trees. Model
checking of the µ-calculus or testing emptiness of a parity tree automaton are problems
that are polynomial time equivalent to solving parity games.

A parity game is played by two players, call them Even and Odd. The goal of player
Even is to see small even numbers, the goal of player Odd will is to avoid this. The
game is specified by:

— a finite directed graph, called the arena, such that every vertex has an outgoing edge;
— a partition of vertices in the arena, into vertices controlled by players Even and Odd;
— a ranking function which maps vertices in the arena to natural numbers;
— a distinguished initial vertex.

Here is an example of a parity game:

co
nt

ro
lled by Even

rank
0

co

ntrolled by Oddrank

initial vertex

1

control led by Even

control led by O
dd

rank
2

rank
2

The game is played as follows. The game begins in the initial vertex. The player who
controls the initial vertex chooses an outgoing edge. The player who controls the target
of this edge chooses an edge leaving the target, and so on ad infinitum, until an infinite
path in the graph is formed. The objective of player Even is to make sure that on this
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path, the minimal value of the ranking function that is seen infinitely often is even
(this objective is called the parity condition).

Determinacy. From the Martin Determinacy theorem it follows that every parity
game is determined, which means that either player Even has a winning strategy (no
matter what player Odd does, the parity condition is satisfied), or player Odd has a
winning strategy (no matter what player Even does, the parity condition is violated).
The algorithmic challenge is to decide which one is the case.

The open problem. Is there a polynomial time algorithm for solving parity games,
i.e. determining which of the players has a winning strategy?

Memoryless determinacy. As shown in [Emerson and Jutla 1991] and [Mostowski
1991], parity games are not just determined, but even memoryless determined, i.e. if
one of the players has winning strategy, then that player has a memoryless winning
strategy, where the choice of next vertex depends only on the current vertex, and not
on the entire history of the vertices visited before. For instance, in the game pictu-
red above, player Even wins by using the following memoryless strategy: when in the
southwest corner go north, and when in the the northwest corner go east (southeast
would also be a good choice).

Memoryless determinacy leads to an NP algorithm for deciding if player Even has
a winning strategy: guess a memoryless strategy for player Even, and then check in
polynomial time if every path that is consistent with this strategy satisfies the parity
condition. The same kind of algorithm works for player Odd, and therefore the problem
is in NP \ coNP, and yet it is not known to be in P.

Known algorithms. As the statement of the open problem implies, there is no known
algorithm for solving parity games in polynomial time. Two examples of known algori-
thms for solving parity games are: a divide and conquer algorithm [Zielonka 1998], and
the strategy improvement algorithm [Vöge and Jurdziński 2000]. These algorithms
have exponential worst case complexities, e.g. [Friedmann 2009] provides a lower bo-
und for the strategy improvement algorithm. Interestingly, the insights obtained from
analyzing the existing parity game algorithms can be used to get lower bounds for
variants of the simplex algorithm in linear programming [Friedmann et al. 2011].

Fixed parameter tractability. Before solving parity games in polynomial time, one co-
uld at least try to show that the problem is fixed parameter tractable, for some choice of
parameter. It is known that parity games are fixed parameter tractable for parameters
of the arena such as: tree width [Obdrzálek 2003], clique width [Obdrzálek 2007], DAG
width [Berwanger et al. 2012a], Kelly width [Hunter and Kreutzer 2008] or entangle-
ment [Berwanger et al. 2012b]. Perhaps the most natural parameter is the number of
ranks used by the ranking function – and fixed parameter tractability is open for this
particular parameter. In other words, it is not known if there is an algorithm which
solves a parity game with k ranks and n vertices in time f(k) · nc for some computable
function f and some exponent c which does not depend on k.

2. DO ALL REGULAR LANGUAGES HAVE GENERALISED STAR HEIGHT ONE?
A generalised regular expression is one that can use complementation along the more
standard operations of concatenation, union and Kleene star. Since regular languages
are closed under complementation, generalised regular expressions have the same
expressive power as standard regular expressions, although they can be more succinct,
even nonelementarily more succinct as shown in [Stockmeyer 1974].
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The open problem. Is there a regular language of finite words which cannot be
defined by a generalised regular expression of star height one, i.e. one that does not
nest the Kleene star?

This open problem is one of the questions concerning star height, which have mo-
tivated a lot of research in automata theory. The star height of a regular expression,
generalised or not, is defined to be the nesting depth of the Kleene star. For instance,
the (non-generalised) regular expression (a⇤b)⇤a⇤ has star height 2. The star height of
a language is defined to be the smallest star height of a regular expression that defines
it. There are two variants of star height, generalised and non-generalised, depending
on the type of regular expressions that are considered. In other words, the open pro-
blem is: does every regular language have generalised star height zero or one?

Non-generalised star height. Non-generalised star height is by now quite well un-
derstood. There are regular languages that have arbitrarily high non-generalised star
height [Eggan 1963]. Whether or not the non-generalised star height can be computed
was an open problem for 35 years, until it was shown to be computable in [Hashiguchi
1988], see [Kirsten 2005] for a simpler proof.

Generalised star height. Much less is known about the hierarchy of generalised star
height. The only level that is understood is level zero, which is called the star-free lan-
guages, i.e. the languages that can be defined from finite languages using only Boolean
operations and concatenation. A famous result shown in [Schützenberger 1965] says
that a languages is star-free if and only if it is recognised by a finite monoid which does
not contain a nontrivial group. There is also an important logical connection, shown
in [McNaughton and Papert 1971]: a language is star-free if and only if it can be defi-
ned by a formula of first-order logic, which quantifies over positions of the word, has a
binary predicate x  y for the order on positions, and has unary predicates a(x). For
example, the formula

8x9y x  y ^ a(y)

says that the every position is followed by a position with label a. The language defined
by this example formula is star-free because it is the concatenation of the set of all
words (the complement of the empty set) with the finite language {a}.

Beyond star-free languages, i.e. beyond level zero, very little is known. As stated in
the open problem, as far as we know, maybe all regular languages have star height at
most one, or maybe at most fifteen. As shown in [Pin et al. 1992], assuming that some
languages have star height at least two, then the generalised star height of a regular
language cannot be determined just by looking at the language’s syntactic monoid. The
paper [Pin et al. 1992] also contains several surprising languages that have generali-
sed star height one, including the language “an even number of infixes of the form abc”,
which was conjectured to have bigger generalised star height in [Brzozowski 1980].

3. WHICH REGULAR LANGUAGES OF FINITE TREES ARE FIRST-ORDER DEFINABLE?
This problem concerns regular languages of finite trees. For the sake of concreteness,
we use the variant of ranked trees. In this variant, the trees are over a ranked al-
phabet, where each letter comes with an arity, and trees are labelled by the alphabet
so that the number of children of a node is the arity of its label, as depicted in the
following picture.
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Tree automata. A good notion of tree automaton for such trees is a bottom-up deter-
ministic automaton. In such an automaton, if the states are Q, then every letter a of
arity n induces a transition function of type Q

n ! Q. In particular, each leaf, which
has a label of arity zero, comes with an associated state. By applying the transition
functions in a bottom-up manner, the automaton evaluates a tree to a single state. A
tree language is called regular if there is some automaton such that membership in
the language is uniquely determined by the state to which a tree evaluates.

Monadic second-order logic on trees. Many results on automata can be generalised
from finite words to finite trees without much difficulty, e.g. pumping lemmas or equ-
ivalence of deterministic and non-deterministic bottom-up automata. Another exam-
ple of result that can be generalised is the following correspondence between monadic
second-order logic and regular languages. A tree can be seen as a logical structure,
where the universe is the set of nodes, and which has the following predicates: a unary
predicate “node x has label a” for every letter a of the alphabet, a binary predicate
“node x is a descendant of node y”, and a binary predicate “node x is the i-th child of
node y” for every number i up to the maximal arity in the alphabet. A classical result
on tree automata [Thatcher and Wright 1968] says that a tree language is regular if
and only if it is definable in monadic second-order logic, i.e. the logic which can quan-
tify over nodes and sets of nodes.

First-order logic on trees. Languages that are definable in first-order logic are a strict
subclass of regular tree languages. For instance the language “some leaf is at even
depth” is not definable in first-order logic if the alphabet includes at least one letter
of rank one. (Although, as will be later discussed, the language is definable, somehow
annoyingly, when there are no letters of rank one.) Another example, which does not
have any natural word counterpart, is the language of Boolean expressions, as in the
picture above, that evaluate to >.

The open problem. Can one decide whether a regular language of finite trees can be
defined by a formula of first-order logic that uses the label predicates, the descendant
predicate, and i-th child predicates?

In the case of finite words, the problem above is well understood. The results of
Schützenberger, McNaughton and Papert, which were mentioned previously in the
context of star-free languages, imply that one can decide if a regular language of finite
words can be defined in first-order logic: one can compute the syntactic monoid and
then test if it contains a nontrivial group.

For trees much less is known. The open problem dates back to [Thomas 1984].
In [Heuter 1991] it was shown that aperiodicity (in a natural tree variant) is a ne-
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cessary but not sufficient condition for definability in first-order logic on finite trees. In
other words, the equivalence of first-order definability and aperiodicity fails to extend
from words to trees. For the equivalence of first-order definability and star-freeness,
the story is a bit more complicated: there are variants of star-free expressions that are
strictly more expressive than first-order logic [Thomas 1984], and there are variants of
star-free expressions that are equally expressive as first-order logic [Bojańczyk 2007].
Finally, first-order logic on finite trees admits characterisations in terms of temporal
logics, namely two-way CTL [Schlingloff 1992] and one-way CTL* [Hafer and Thomas
1987]. These characterisations show that first-order logic on trees is a robust concept,
but they do not seem to be useful in solving the open problem.

As usual for trees, there are several variants of the problem, e.g. one can consider
the logic without the i-th child predicates, or one can consider unranked trees with
or without a predicate for sibling order. In all of these cases it is not known how to
characterise first-order logic.

The only known result is about full first-order logic without the descendant relation,
where only predicates for the labels and the child relation are allowed. In this case, one
can decide if a language is definable in first-order logic [Benedikt and Segoufin 2009].
Other known results talk about fragments of first-order logic with limited quantifica-
tion patters, e.g. Boolean combinations of existential formulas [Bojanczyk et al. 2012]
or first-order logic with only two variables [Place and Segoufin 2010].

To give a taste of the difficulties inherent to first-order logic on trees, consider the
following example, which is due to [Potthoff 1995]. Assume that the alphabet has one
letter of rank zero and one letter of rank two, and the language is “some leaf is at
even depth”. As mentioned before, this language is definable in first-order logic, using
the descendant, left child and right child predicates. Despite being invariant under
swapping left and right subtrees, the language is not definable in first-order logic using
the descendant predicate only.

4. THE RABIN-MOSTOWSKI INDEX HIERARCHY
Tree automata are studied – arguably, better studied – also for infinite trees. Let us
consider labelled binary trees, where every node has a label from a finite set and exac-
tly two children. The famous Rabin theorem [Rabin 1969] says that a language of
labelled binary trees is definable in MSO if and only if it is recognised by a nondeter-
ministic automaton with the Rabin condition. Currently, instead of automata with the
Rabin condition, one uses the parity condition, in their nondeterministic and alterna-
ting variants, as described below. Both of these variants are equally expressive as MSO,
and therefore as nondeterministic automata with the Rabin condition.

Nondeterministic parity tree automata. A nondeterministic parity tree automaton
consists of an input alphabet A, a set of states Q, an initial state q0 2 Q, a parity
ranking function ⌦ : Q ! N, and a transition relation

� ✓ Q⇥A⇥Q⇥Q.

A transition can be visualised as a node in a binary tree, with the node labelled by the
input alphabet, and its surrounding edges labelled by states:
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When given an input tree, a run of the automaton is a labelling of the edges of the tree
by states, including a special dummy edge that enters the root from above, such that
the neighbourhood of every node is consistent with some transition. A run is accepting
if the dummy edge gets the initial state, and on every infinite path, the parity condition
is satisfied by the ranks assigned to the states.

Alternating parity tree automata. An alternating parity tree automaton differs from
a nondeterministic one in two ways: a) there is a partition of the states into states
owned by players Even and Odd, b) the transition relation is a subset

� ✓ Q⇥A⇥ {same, left, right}⇥Q.

To determine whether or not such an automaton accepts an input tree, a parity game
is played between players Even and Odd. Positions of the game are pairs (q, v), where
q is a state of the automaton and v is a node of the input tree. The initial position is
the pair consisting of the initial state and the root of the tree. When the game is in a
position (q, v), then the player who controls state q chooses a transition (q, a, i, p), and
the game continues from position (p, w), where w is either the same node as v, the left
child of v, or the right child of v, depending on the value of i. The tree is accepted if
player Even has a winning strategy in this game, according to the parity condition as
determined by the parity ranking function on the states.

The index hierarchies. For numbers i  j, consider parity automata, either nonde-
terministic or alternating, where the parity ranking function has image included in
{i, . . . , j}. It is easy to see that the class of recognised languages depends only on the
parity of the smaller rank i, and on the number of available ranks j � i + 1. In other
words, one can assume without loss of generality that i is either 0 or 1.

Adding more ranks gives a strict hierarchy, in the following sense, see [Bradfield
1998; Arnold 1999]. For every i and every j � i, there exists a language Lij which is
recognised by a nondeterministic parity automaton with ranks {i, . . . , j}, but which is
not recognised by an alternating parity automaton with ranks {i+1, . . . , j+1}, i.e. the
same number of ranks but shifted by one. The open problem is to decide the position
of a regular language of infinite trees in this hierarchy:

The open problem. Are the following decision problems decidable? In each of them,
the input is a regular language of infinite trees and natural numbers i  j.

— Nondeterministic index problem. Is the language recognised by some nondeter-
ministic parity automaton that uses ranks between i and j?

— Alternating index problem. Is the language recognised by some alternating parity
automaton that uses ranks between i and j?

Known results. The nondeterministic and alternating index problems are known to
be decidable assuming that the input regular language is recognised by a top-down de-
terministic parity automaton [Niwiński and Walukiewicz 2003], or even assuming that
the input regular language is recognised by a generalisation of deterministic top-down
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automata called game automata [Duparc et al. 2009]. In [Colcombet and Löding 2008],
the nondeterministic index problem is reduced to a problem about counter automata
on infinite trees; the latter problem (which is interesting in its own right) remains
open. A partial result on these counter automata is given in [Colcombet et al. 2013],
this partial result implies that one can decide, given a language recognised by a non-
deterministic Büchi automaton (i.e. using ranks 0 and 1), if the complement of the
language is also recognised by a nondeterministic Büchi automaton.

Weak MSO. An important special case of the index problems is deciding if a regular
tree language can be defined in weak MSO, i.e. the variant of MSO where set quan-
tification is restricted to finite sets. Why is this a special case? As shown in [Rabin
1970], a language of infinite trees is definable in weak MSO if and only if both the lan-
guage and its complement are recognised by nondeterministic Büchi tree automata.
Furthermore, with the Büchi acceptance condition, nondeterministic and alternating
automata have the same expressive power [Muller and Schupp 1995]. Therefore, if one
could decide which regular languages of infinite trees are recognised by nondetermini-
stic (equivalently, alternating) Büchi tree automata, then one could decide which ones
are definable in weak MSO. A related conjecture, see [Skurczyński 1993], is that for re-
gular languages of infinite trees, being Borel is equivalent to being definable in weak
MSO.

5. MONADIC SECOND-ORDER LOGIC ON THE CANTOR SPACE.
Consider the sets 2⇤ and 2! as logical structures: the former is equipped with both
descendant and lexicographic orders, and the latter is equipped with only the lexi-
cographic order. The Rabin theorem says that the first structure has decidable MSO
theory. Shelah showed that the second structure, i.e. the Cantor space, has undeci-
dable MSO theory. A corollary is that the real numbers have undecidable MSO theory.
Shelah’s original proof in [Shelah 1975] uses the Continuum Hypothesis, while a later
proof [Gurevich and Shelah 1982] uses only the axioms of ZFC. In the undecidability
proof, it is important that formulas can quantify over arbitrary subsets of 2! and not
just simple sets, such as Borel sets. Therefore, Shelah stated the following problem,
which remains open.

The open problem. Can one decide the MSO theory of the Cantor space 2! with
lexicographic ordering, assuming that set qantifiers range only over Borel sets?

To illustrate the problem, consider a logic which uses a smaller prefix of the Borel
hierarchy, namely level ⇧2, i.e. the countable intersections of open sets. Consider MSO
logic over 2! where set quantification is restricted to ⇧2 sets. We claim that this logic
is decidable, as it reduces to MSO on 2⇤ with left and right child predicates, i.e. to the
logic from Rabin’s theorem. The idea is to reduce both first-order quantification and
set quantification to set quantification in 2⇤. For first-order quantification, one simply
encodes an element of 2! as the set of its finite prefixes, i.e. a path in a tree. To encode
a set X ✓ 2! that is in ⇧2, one uses the following observation, which follows easily
from the definition of level ⇧2 in the Borel hierarchy: a set X ✓ 2! belongs to ⇧2 if and
only if there exists a subset [X] ✓ 2⇤ such that

⇡ 2 X iff ⇡ has infinitely many prefixes in [X].

This reduction seems to use almost all of the power of the Rabin theorem. It seems that
giving a positive answer to the open problem would require a significant extension of
the techniques in the Rabin theorem.
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6. IS REACHABILITY DECIDABLE FOR BRANCHING VECTOR ADDITION SYSTEMS?
One of the most famous decidability results [Mayr 1984] is that reachability is decida-
ble in vector addition systems with states. A vector addition system with states, VASS
for short, is a type of counter machine that is equivalent to Petri nets, and is defined
as follows. The syntax of a VASS consists of a finite set of states Q with a distinguished
initial state, a dimension d 2 N, and a finite subset of � ✓ Q ⇥ Zd ⇥ Q, which is called
the set of transitions. The semantics of a VASS is the set of reachable configurations,
which is the least set of pairs in Q⇥ Nd such that:

— If q is the initial state, then (q, 0̄) is a reachable configuration.
— If a configuration (q, ā) is reachable, and there is a transition (q, b̄, p) such that the

vector ā+ b̄ has only nonnegative numbers, then also (p, ā+ b̄) is reachable.
The key thing is that transitions can have negative numbers, while configurations
cannot. As shown in [Mayr 1984], the set of reachable configurations is decidable. One
notorious open problem is the computational complexity of reachability – the best lo-
wer bound is EXPSPACE [Cardoza et al. 1976], but it is not even known if reachability
has elementary complexity. A recent decidability proof can be found in [Leroux 2012].

Branching vector addition systems with states. A branching vector addition system
with states, BVASS for short, generalises a VASS by allowing a new kind of transition,
call it a branching transition, which is a triple of states. The set of reachable confi-
gurations is defined as in a VASS, with the additional rule that if (q, ā) and (p, b̄) are
reachable configurations, and the BVASS contains a branching transition (p, q, r), then
also (r, ā+ b̄) is a reachable configuration.
The open problem. Is reachability decidable for branching vector addition systems?

It is known that reachability for BVASS is Ackermann hard [Lazić and Schmitz 2014],
i.e. if it is decidable then the running time of the algorithm must be bigger than the
Ackermann function. Control state reachability – i.e. the problem of determining which
states can appear in reachable configurations – is known to be decidable [Verma and
Goubault-Larrecq 2005].

Connections with logic. Here are two examples of how the problem is connected with
logic. The first connection comes from linear logic – the decidability of the reachability
problem for BVASS is equivalent to the decidability of multiplicative exponential linear
logic [de Groote et al. 2004]. The second connection comes from the theory of XML – the
reachability problem for BVASS reduces to the satisfiability problem of a certain logic
on data trees, namely two variable first-order logic with predicates for descendant,
successor, next sibling, and equal data value [Bojańczyk et al. 2009].
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Jean-Éric Pin, Howard Straubing, and Denis Thérien. 1992. Some Results on the Generalized Star-Height

Problem. Inf. Comput. 101, 2 (1992), 219–250.
Thomas Place and Luc Segoufin. 2010. Deciding Definability in FO2(<) (or XPath) on Trees. In Proceedings

of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14 July 2010, Edin-
burgh, United Kingdom. 253–262.

A. Potthoff. 1995. First-Order Logic on Finite Trees. In Theory and Practice of Software Development (Lecture
Notes in Computer Science), Vol. 915. 125–139.

M. O. Rabin. 1969. Decidability of Second-Order Theories and Automata on Infinite Trees. Transactions of
the AMS 141 (1969), 1–23.

M. O. Rabin. 1970. Weakly Definable Relations and Special Automata. Mathematical Logic and Foundations
of Set Theory (1970), 1–23.

Bernd-Holger Schlingloff. 1992. Expressive completeness of temporal logic of trees. Journal of Applied Non-
Classical Logics 2, 2 (1992), 157–180.

M. P. Schützenberger. 1965. On Finite Monoids Having Only Trivial Subgroups. Information and Control 8
(1965), 190–194.

Saharon Shelah. 1975. The Monadic Theory of Order. The Annals of Mathematics 102, 3 (1975), 379–419.
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For years when I taught algorithms or complexity, I would tell my students that
while there is an infinite range of intermediate complexity classes, problems occurring
in practice tend to be complete for one of a handful of important complexity classes.

I used to say that no one knows why this happens. Now however I can say that
it happens for an algebraic reason which Libor Barto and his colleagues are close to
figuring out. I am thrilled to have as our first Complexity Column in the SIGLOG
Newsletter, the following survey on CSP.

I am also happy to announce that upcoming complexity columns will include the
following:

— Anuj Dawar, “The Nature and Power of Fixed-Point Logic with Counting,” [recent
progress in the search for a logical language capturing order-independent Polynomial
Time], Jan. 1, 2015.

— Jakob Nordstrom, [using proof complexity to gain insights into the complexity of
SAT].
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Constraint Satisfaction Problem
and Universal Algebra

Libor Barto,
Department of Algebra,
Faculty of Mathematics and Physics,
Charles University in Prague

This column gives a brief survey of current research on the complexity of the constraint satisfaction problem
(CSP) over fixed constraint languages.

1. INTRODUCTION
The Constraint Satisfaction Problem (CSP) provides a common framework for express-
ing a wide range of both theoretical and real-life combinatorial problems [Rossi et al.
2006]. One solves an instance of CSP by assigning values to the variables so that the
constraints are satisfied.

In this column I describe some dramatic recent progress in our understanding of the
computational complexity of CSP over a fixed constraint language. This restricted
framework is still broad enough to include many NP-complete problems, yet it is nar-
row enough to potentially allow a complete classification of all such CSP problems.

One particularly important achievement is the understanding of what makes a prob-
lem in this class computationally easy or hard. It is not surprising that hardness comes
from lack of symmetry. However, usual objects capturing symmetry, automorphisms (or
endomorphisms) and their groups (or semigroups), are not sufficient in this context. It
turned out that the complexity of CSP is determined by more general symmetries:
polymorphisms and their clones.

My aim in this column is to introduce the basics of this exciting area and high-
light selected deeper results, in a way that is understandable to readers with a basic
knowledge of computational complexity (see [Papadimitriou 1994; Arora and Barak
2009]). The presentation of the material is based on my talk “Universal algebra and
the constraint satisfaction problem” delivered at the Association of Symbolic Logic
North American Annual Meeting held in Boulder, Colorado, in 2014. A more detailed
version of this column is being prepared for the Bulletin of Symbolic Logic.

2. CSP OVER A FIXED CONSTRAINT LANGUAGE
A constraint – such as R(x3, x1, x4) – restricts the allowed values for a tuple of variables
– in this case (x3, x1, x4) – to be an element of a particular relation on the domain –
in this case R ✓ D

3.1 By an n-ary relation R on a domain D we mean a subset of the
n-th cartesian power D

n. It is sometimes convenient to work with the corresponding
predicate which is a mapping from D

n to {true, false} specifying which tuples are in R.
We will use both formalism, so e.g. (a, b, c) 2 R and R(a, b, c) both mean that the triple
(a, b, c) 2 D

3 is from the relation R.
An instance of CSP is a list of constraints, e.g.,

R(x), S(y, y, z), T (y, w),

where R, S, T are relations of appropriate arity on a common domain D and x, y, z, w

are variables. A mapping f assigning values from the domain to variables is a solution

1There are also different types of constraints considered in the literature, see e.g. Chapter 7 in [Rossi et al.
2006].
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if it satisfies all the constraints, that is, in our example,
R(f(x)) and S(f(y), f(y), f(z)) and T (f(y), f(w)) .

Three basic computational problems associated with an instance are the following:
— Satisfiability. Does the given instance have a solution? (A related problem, the

search problem, is to find some solution if at least one solution exists.)
— Optimization. Even if the instance has no solution, find an optimal assignment,

i.e., one that satisfies the maximum possible number of constraints. (Approximation
algorithms are extensively studied, where the aim is, for example, to find an assign-
ment that satisfies at least 80% of the number of constraints satisfied by an optimal
assignment.)

— Counting. How many solutions does the given instance have? (This problem also
has an approximation version: approximate counting.)

2.1. Satisfiability over a fixed constraint language
Even the easiest of the problems, satisfiability, is computationally hard: It contains
many NP-complete problems including, e.g., 3-SAT (see Example 2.2). However, certain
natural restrictions to CSP satisfiability ensure tractability. The main types of restric-
tions that have been studied are structural restrictions, which limit how constraints
interact, and language restrictions, which limit the choice of constraint relations.

In this column, I focus just on satisfiability problems with language restrictions.
Please see [Živný 2012] for optimization problems and a generalization to valued CSPs,
[Håstad 2007] for approximation, [Cai and Chen 2012] for counting, and [Bodirsky
2008] for a generalization to infinite domains.

Definition 2.1. A constraint language, D, is a set of relations on a common finite
domain, D. We use CSP(D) to denote the set of CSP satisfiability problems whose
relations are drawn from D.

2.2. Examples
Example 2.2. An instance of the standard NP-complete problem, 3-SAT, is a

Boolean formula in conjunctive normal form with exactly three literals per clause.
For example, the formula,

' = (x1 _ ¬x2 _ x3) ^ (¬x4 _ x5 _ ¬x1) ^ (¬x1 _ ¬x4 _ ¬x3)

is a satisfiable instance of 3-SAT. (Any assignment making x1 and x2 false, satisfies
'.) 3-SAT is equivalent to CSP(D3SAT), where D3SAT = {0, 1} and

D3SAT = {Sijk : i, j, k 2 {0, 1}}, where Sijk = {0, 1}3 \ {(i, j, k)} .

For example, the above formula ' corresponds to the following instance of CSP(D3SAT)

S010(x1, x2, x3), S101(x4, x5, x1), S111(x1, x4, x3) .

More generally, for a natural number k, k-SAT denotes a similar problem where each
clause is a disjunction of k literals.

Since 3-SAT is NP-complete, it follows that k-SAT is NP-complete for each k � 3. On
the other hand, 2-SAT is solvable in polynomial time, and is in fact complete for the
complexity class NL (non-deterministic logarithmic space).

Example 2.3. HORN-3-SAT is a restricted version of 3-SAT, where each clause
may have at most one positive literal. This problem is equivalent to CSP(DHornSAT)
for DHornSAT = {S011, S101, S110, S111} (or just DHornSAT = {S011, S111}). HORN-3-SAT is
solvable in polynomial time, in fact, it is a P-complete problem.
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Example 2.4. For a fixed natural number k, the k-COLORING problem is to de-
cide whether it is possible to assign colors {1, 2, . . . , k} to vertices of an input graph in
such a way that adjacent vertices receive different colors. This problem is equivalent
to CSP(DkCOLOR), where Dk = {1, 2, . . . , k} and DkCOLOR = {6=k} consists of a single
relation – the binary inequality relation 6=k= {(a, b) 2 D

2
k : a 6= b}.

Indeed, given an instance of CSP(D), we can form a graph whose vertices are the
variables and edges correspond to the binary constraints (that is, x has an edge to y iff
the instance contains the constraint x 6=k y). It is easily seen that the original instance
has a solution if and only if the obtained graph is k-colorable. The translation in the
other direction is similar.

The k-COLORING problem is NP-complete for k � 3. 2-COLORING is equivalent
to deciding whether an input graph is bipartite. It is solvable in polynomial time, in
fact, it is an L-complete problem (where L stands for logarithmic space) by a celebrated
result of [Reingold 2008].

Example 2.5. Let p be a prime number. An input of 3-LIN(p) is a system of linear
equations over the p-element field GF(p), where each equation contains 3 variables,
and the question is whether the system has a solution. This problem is equivalent to
CSP(D), where D3LINp = GF(p) and D3LINp consists of all affine subspaces of GF(p)

3 of
dimension 2 or 3:

D3LINp = {Rabcd : a, b, c, d 2 GF(p)}, , where Rabcd = {(x, y, z) 2 GF(p)
3
: ax+by+cz = d} .

This problem is solvable in polynomial time, e.g. by Gaussian elimination. It is com-
plete for a somewhat less familiar class ModpL.

Example 2.6. An instance of the s, t-connectivity problem, STCON, is a directed
graph and two vertices s, t. The question is whether there exists a directed path from
s to t.

A closely related (but not identical) problem is CSP(DSTCON), where DSTCON = {0, 1}
and DSTCON = {C0, C1,}, C0 = {0}, C1 = {1}, = {(0, 0), (0, 1), (1, 1)}. Indeed, given
an instance of CSP(DSTCON) we form a directed graph much as we did in Example 2.4
and label some vertices 0 or 1 according to the unary constraints. Then the original
instance has a solution if and only if there is no directed path from a vertex labeled 1
to a vertex labeled 0. Thus CSP(DSTCON) can be solved by invoking the complement of
STCON, the s, t-non-connectivity problem, several times.

Both STCON and CSP(DSTCON) can clearly be solved in polynomial time. By the
Immerman-Szelepcsényi theorem [Immerman 1988; Szelepcsényi 1988] both problems
are NL-complete.

In the same way, the s, t-connectivity problem for undirected graphs is closely related
to CSP(DUSTCON), where DUSTCON = {0, 1} and DUSTCON = {C0, C1,=}. These problems
are L-complete by [Reingold 2008].

2.3. The dichotomy conjecture
The most fundamental problem in the area was formulated in the landmark pa-
per [Feder and Vardi 1998].

CONJECTURE 2.7 (THE DICHOTOMY CONJECTURE). For every finite2 constraint
language D, the problem CSP(D) is in P or is NP-complete.

2It is conjectured in [Bulatov et al. 2005] that the dichotomy remains true without the finiteness assumption.
Namely, the local-global conjecture states that CSP(D) is in P (NP-complete) whenever CSP(D0) is in P (NP-
complete) for every (some) finite D0 ✓ D.
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Recall that if P 6= NP, then there are problems of intermediate complexity [Ladner
1975]. Feder and Vardi argued that CSPs over a fixed constraint language is a good
candidate for a largest natural class of problems with P versus NP-complete dichotomy.

At that time the conjecture was supported by two major cases: the dichotomy theo-
rem for all languages over the two-element domain [Schaefer 1978] and the dichotomy
theorem for languages consisting of a single binary symmetric relation [Hell and
Nešetřil 1990].

Feder and Vardi have identified two sources of polynomial-time solvability and made
several important contributions toward understanding these sources. In particular,
they observed that the known polynomial cases were tied to algebraic closure proper-
ties and asked whether polynomial solvability for CSP can always be explained in such
a way. Subsequent papers have shown that this is indeed the case and this connection
to algebra brought the area to another level.

The algebraic approach is outlined in section 3 and some fruits of the theory dis-
cussed in section 4.

2.4. Alternative views
Note that a constraint language D with domain D, D = (D;R1, R2, . . . ), is exactly a
relational structure, or equivalently relational database, with universe D.

Recall that a conjunctive query over the database D is an existential sentence whose
quantifier-free part is a conjunction of atoms. CSP(D) is exactly the problem of deciding
whether D satisfies a given conjunctive query. For example, the instance

R(x), S(y, y, z), T (y, w)

has a solution if and only if the sentence
(9x, y, z, w 2 D) R(x) ^ S(y, y, z) ^ T (y, w)

is true in D.
From this perspective, it is natural to ask what happens if we allow some other com-

bination of logical connectives {9, 8,^,_,¬,=, 6=}. It turns out that out of the 27 cases
only 3 are interesting (the other cases either reduce to these, or are almost always easy
or hard by known results): {9,^} which is CSP, {9, 8,^} which is so called quantified
CSP, and {9, 8,^,_}. The complexity of quantified CSP is also an active research area
[Chen 2012] with possible trichotomy P, NP-complete or Pspace-complete. Recently, a
tetrachotomy was obtained for the last choice [Madelaine and Martin 2011] – for every
D, the corresponding problem is either in P, NP-complete, co-NP-complete, or Pspace-
complete.

The CSP over a fixed language can also be formulated as the homomorphism prob-
lem between relational structures with a fixed target structure [Feder and Vardi 1998].
The idea of the translation is shown in Examples 2.4, 2.6.

3. UNIVERSAL ALGEBRA IN CSP
If a computational problem A can simulate (in some sense) another problem B, then A
is at least as hard as B. This simple idea is widely used in computational complexity;
for instance, NP-completeness is often shown by a gadget reduction of a known NP-
complete problem to the given one. A crucial fact for the algebraic theory of CSP is that
so called primitive positive (pp-, for short) interpretation between constraint languages
gives such a reduction between corresponding CSPs (more precisely, if D pp-interprets
E , then CSP(E) is reducible to CSP(D)). Pp-interpretations have been, indirectly, the
main subject of universal algebra for the last 80 years!

The algebraic theory of CSPs was developed in a number of papers including [Jeav-
ons et al. 1997; Jeavons 1998; Bulatov et al. 2005; Larose and Tesson 2009]. The view-
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point taken here is close to [Bodirsky 2008]. All results in this section come from these
sources unless stated otherwise.

To simplify formulations, all constraint languages are assumed to contain finitely
many relations, all of them nonempty. By a reduction we mean a logarithmic space
reduction (although first-order reductions are often possible under additional weak
assumptions).

3.1. Primitive positive interpretations
An important special case of pp-interpretability is pp-definability.

Definition 3.1. Let D, E be constraint languages on the same domain D = E. We say
that D pp-defines E (or E is pp-definable from D) if each relation in E can be defined by
a first order formula which only uses relations in D, the equality relation, conjunction
and existential quantification.

THEOREM 3.2. If D pp-defines E , then CSP(E) is reducible to CSP(D).

Example 3.3. Let R be an arbitrary ternary relation on a domain D. Consider the
relations on D defined by

S(x, y) iff (9z)R(x, y, z) ^R(y, y, x), T (x, y) iff R(x, x, x) ^ (x = y) ,

where the existential quantification is understood over D. The relations S and T are
defined by pp-formulae, therefore the constraint language D = {R} pp-defines the
constraint language E = {S, T}.

We sketch the reduction of CSP(E) to CSP(D) using the instance

S(x3, x2), T (x1, x4), S(x2, x4) .

We first replace S and T with their pp-definitions by introducing a new variable for
each quantified variable:

R(x3, x2, y1), R(x2, x2, x3), R(x1, x1, x1), x1 = x4, R(x2, x4, y2), R(x4, x4, x2)

and then we get rid of the equality constraint x1 = x4 by identifying these variables.
This way we obtain an instance of CSP(D):

R(x3, x2, y1), R(x2, x2, x3), R(x1, x1, x1), R(x2, x1, y2), R(x1, x1, x2) .

Clearly, the new instance of CSP(D) has a solution if and only if the original instance
does.

This simple theorem provides a quite powerful tool for comparing CSPs over dif-
ferent languages on the same domain. A more powerful tool, which can also be used
to compare languages with different domains, is pp-interpretability. Informally, a con-
straint language D pp-interprets E , if the domain of E is a pp-definable relation (from
D) modulo a pp-definable equivalence, and the relations of E (viewed, in a natural way,
as relations on D) are also pp-definable from D.3 Formally:

Definition 3.4. Let D, E be constraint languages. We say that D pp-interprets E if
there exists a natural number n, F ✓ D

n, and an onto mapping f : F ! E such that D
pp-defines

— the relation F ,
— the f -preimage of the equality relation on E, and
— the f -preimage of every relation in E ,

3This is the classical notion of interpretation from model theory restricted to pp-formulas.

ACM SIGLOG News 18 October 2014, Vol. 1, No. 2



where by the f -preimage of a k-ary relation S on E we mean the nk-ary relation f

�1(S)
on D defined by
f

�1(S)(x11, . . . , x1k, x21, . . . , x2k, . . . , xn1, . . . , xnk) iff S(f(x11, . . . , xn1), . . . , f(x1k, . . . , xnk))

THEOREM 3.5. If D pp-interprets E , then CSP(E) is reducible to CSP(D).
Pp-interpretability is a reflexive and transitive relation on the class of constraint

languages. By identifying equivalent languages, i.e. languages which mutually pp-
interpret each other, we get a partially ordered set, the pp-interpretability poset. The-
orem 3.5 then says that the “higher” we are in the poset the “easier” CSP we deal
with. 3-SAT is terribly hard – its constraint language is the least element of this poset.
Surprisingly, this is “almost” the case for all known NP-complete CSPs! For a precise
formulation we need a reduction described in the following subsection.

3.2. Cores and singleton expansions
Let D be a constraint language on a finite set D. A mapping f : D ! D is called an
endomorphism if it preserves every relation D, that is, f(R) := {f(a) : a 2 R} ✓ R for
every R 2 D.

THEOREM 3.6. Let D be a constraint language and f an endomorphism of D. Then
CSP(D) is reducible to CSP(f(D)) and vice versa, where f(D) is a constraint language
with domain f(D) defined by f(D) = {f(R) : R 2 D}.

A language D is a core if every endomorphism of D is a bijection. It is not hard to
show that if f is an endomorphism of a constraint language D with minimal range,
then f(D) is a core. Moreover, this core is unique up to isomorphism, therefore we
speak about the core of D.

An important fact is that we can add all singleton unary relations to a core constraint
language without increasing the complexity of its CSP:

THEOREM 3.7. Let D be a core constraint language and E = D[
S

a2D Ca, where Ca

denotes the unary relation Ca = {a}. Then CSP(E) is reducible to CSP(D).
We will call constraint languages containing all singletons idempotent. Note that an

idempotent constraint language is automatically a core as the only endomorphism is
the identity. By Theorems 3.6, 3.7, CSP over D is reducible to CSP over the singleton
expansion of the core of D and vice versa. It is therefore enough to study CSPs over
idempotent constraint languages.

An interesting consequence of these reductions is that the search problem for
CSP(D) is solvable in polynomial time whenever CSP(D) is. The idea is to gradually
guess values for variables using the unary singleton constraints.

3.3. Tractability conjecture
Now we return to the pp-interpretability poset. Recall that “higher” in the poset means
“easier” CSP and that 3-SAT corresponds to the least (the hardest) element. When we
restrict to idempotent constraint languages (which we can do by the previous discus-
sion), all known NP-complete CSPs are at the bottom of the poset. Bulatov, Jeavons
and Krokhin conjectured that this is not a coincidence.4

CONJECTURE 3.8 (TRACTABILITY CONJECTURE). If an idempotent constraint lan-
guage D does not pp-interpret (the language of) 3-SAT, then CSP(D) is solvable in poly-
nomial time.

4Similar hardness results and conjectures are formulated for other computational/descriptive complexity
classes.

ACM SIGLOG News 19 October 2014, Vol. 1, No. 2



This conjecture is also known as the algebraic dichotomy conjecture because many
equivalent formulations, including the original one, are algebraic.

3.4. Algebraic side
The link between relations and operations is provided by a natural notion of compat-
ibility. An n-ary operation f on a finite set D (that is, a mapping f : D

n ! D) is
compatible with a k-ary relation R ✓ D

k if f applied component-wise to any n-tuple of
elements of R gives an element of R. In more detail, whenever (aij) is an n⇥ k matrix
such that every row is in R, then f applied to the columns gives a k-tuple which is in
R as well.

We say that an operation f on D is a polymorphism of a constraint language D if f
is compatible with every relation in D. Note that unary polymorphism is the same as
endomorphism. Endomorphisms can be thought of as symmetries, polymorphisms are
then symmetries of higher arity.

The set of all polymorphisms of D will be denoted by D. This algebraic object is
always a concrete clone meaning that it contains all projection operations (that is, op-
erations of the form ⇡

n
i (x1, . . . , xn) = xi, also known as dictators) and is closed under

composition. Therefore we refer to D as the clone of polymorphims of D.
The clone of polymorphisms controls pp-definability in the sense of the following old

result [Geiger 1968; Bodnarčuk et al. 1969].
THEOREM 3.9. Let D, E be constraint languages with D = E. Then D pp-defines E

if and only if D ✓ E.5

In view of this result, Theorem 3.2 says that the complexity of CSP(D) only depends
on the clone D. More precisely, if D ✓ E, then CSP(E) is reducible to CSP(D). Moreover,
the proof of Theorem 3.9 gives a generic pp-definition of E from D, which gives us a
generic reduction of CSP(E) to CSP(D).

Example 3.10. It is a nice exercise to show that the language D3SAT of 3-SAT has
no polymorphisms but projections. This means that D3SAT pp-defines every constraint
language with domain {0, 1}.

Finally, we very briefly discuss the algebraic counterpart to pp-interpretability. The
construction in Definition 3.4 corresponds to a similar construction on clones. An al-
ternative viewpoint, which is missing on the relational side, follows from the foun-
dation stone of universal algebra, the Birkhoff HSP theorem [Birkhoff 1935]: pp-
interpretability depends on the identities (i.e. universally quantified equations) satis-
fied by polymorphisms. To illustrate this vague claim, we state one of many (e.g., [Tay-
lor 1977; Hobby and McKenzie 1988; Maróti and McKenzie 2008; Kun and Szegedy
2009; Siggers 2010]) characterizations of the conjectured borderline between P and
NP-complete CSPs [Barto and Kozik 2012a].

THEOREM 3.11. Let D be an idempotent constraint language and p > |D| a prime.
Then the following are equivalent.

— D does not interpret the language of 3-SAT.
— D contains an operation t (equivalently, D has a polymorphism t) of arity p such that

(8x1, . . . , xp 2 D) t(x1, . . . , xp) = t(x2, . . . , xp, x1) .

Even if the tractability conjecture or the dichotomy conjecture (or finer classification
conjectures) turns out to be incorrect, we know that classes of CSPs in P, L, NL, . . . can
be characterized by identities concerning polymorphisms.

5Moreover, every concrete clone is the clone of polymorphisms of some (possibly infinite) constraint language.
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4. RESULTS
Universal algebra serves the investigation in two ways: as a toolbox containing heavy
hammers (such as [Hobby and McKenzie 1988]) and as a guideline for identifying in-
teresting intermediate cases, which are hard to spot from the purely relational per-
spective. Major results include the following.

— The dichotomy theorem of Schaefer for CSPs over a two-element domain was gener-
alized to a three-element domain [Bulatov 2011]. A simplification of this result and
a generalization to four-element domains was announced by Marković et al.

— The dichotomy theorem of Hell and Nešetřil for CSPs over undirected graphs was
generalized to digraphs with no sources or sinks [Barto et al. 0809].

— The dichotomy conjecture was proved for all constraint languages containing all
unary relations [Bulatov 2011] (a simpler proof is in [Barto 2011]).

Notably, all known tractable cases are solvable by a combination of two basic algo-
rithms, or rather algorithmic principles – local consistency, and the “few subpowers”
algorithm. It is another significant success of the algebraic approach that the applica-
bility of these principles is now understood.

4.1. Local consistency
The CSP over some constraint languages can be decided in polynomial time by con-
straint propagation algorithms, or, in other words, by enforcing local consistency. Such
CSPs are said to have bounded width.

This notion comes in various versions and equivalent forms. We refer to [Feder and
Vardi 1998] for formalizations using Datalog programs and games, to [Bulatov et al.
2008] for description using dualities, and to [Bulatov 2011; Barto 2014] for a notion
suitable for infinite languages.

We informally sketch one possible definition. Let k  l be positive integers. The (k, l)-
algorithm derives the strongest possible constraints on k variables by considering l

variables at a time. If a contradiction is found, the algorithm answers “no (solution)”,
otherwise it answers “yes”. These algorithms work in polynomial time (for fixed k, l)
and “no” answers are always correct. A constraint language D (or CSP(D)) has width
(k, l), if “yes” answers are correct for every instance of CSP(D). If D has width (k, l) for
some k, l, we say that D has bounded width.

As an example, we consider the constraint language D2COLOR and the instance

x1 6= x2, x2 6= x3, x3 6= x4, x4 6= x5, x5 6= x1 .

The (2, 3)-algorithm can certify that this instance has no solution as follows:

— We consider the variables x1, x2, x3. Using x1 6= x2, x2 6= x3 we derive x1 = x3.
— We consider x1, x3, x4. Using x3 6= x4 and the already derived constraint x1 = x3 we

derive x1 6= x4.
— We consider x1, x4, x5 and using x1 6= x4, x4 6= x5 and x5 6= x1 we derive a contradic-

tion.

In fact, 2-COLORING has width (2, 3), that is, such reasoning finds a contradiction
for every unsatisfiable instance. Other examples of bounded width problems include
HORN-3-SAT and 2-SAT.

In [Feder and Vardi 1998], the authors proved that problems 3-LIN(p) (and more gen-
erally, similar problems 3-LIN(M) over finite modules) do not have bounded width and
conjectured that linear equations are essentially the only obstacle for having bounded
width. An algebraic formulation was given by [Larose and Zádori 2007]. They proved
that analogues of results in section 3 hold for bounded width, therefore no problem
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which pp-interprets the language of 3-LIN(M) has bounded width, and conjectured
that the converse is also true. After a sequence of partial results [Kiss and Valeriote
2007; Carvalho et al. 2009; Barto and Kozik 2009; Bulatov 2006], the conjecture was
eventually confirmed in [Barto and Kozik 2014]6 and independently in [Bulatov 2009].

THEOREM 4.1. An idempotent constraint language D has bounded width if and only
if D does not interpret the language of 3-LIN(M) for a finite module M.7

4.2. Few subpowers
Gaussian elimination not only solves 3-LIN(p), it also describes all the solutions in the
sense that the algorithm can output a small (polynomially large) set of points in GF(p)n

so that the affine hull of these points is equal to the solution set of the original instance.
A sequence of papers [Feder and Vardi 1998; Bulatov 2002; Bulatov and Dalmau 2006;
Dalmau 2006] culminating in [Idziak et al. 2007; Berman et al. 2009] pushed this idea,
in a way, to its limit.

We need some terminology to state the result. Let D be a constraint language and D
its clone of polymorphism. A relation on D is a subpower of D if it is pp-definable from
D. Note that the set of solutions of any instance of CSP(D) can be viewed as a subpower
of D. Now D has few subpowers if each subpower can be obtained as a closure under
polymorphisms of a small set (polynomially large with respect to the arity).8

THEOREM 4.2. Let D be an idempotent constraint language. If D has few subpowers,
then CSP(D) can be solved in polynomial time.

5. CONCLUSION
We have seen that the complexity of the satisfiability problem for CSP over a fixed
constraint language depends on “higher arity symmetries” – polymorphisms of the
language. (We have only discussed languages with finite domains. The algebraic theory
extends to interesting subclasses of infinite domain CSP [Bodirsky 2008]). Significant
progress has been achieved using this insight, but the main problem, the dichotomy
conjecture, is still open.

A similar approach can be applied to other variants of CSP over a fixed constraint
language. In two of them, the main goal has been reached: the dichotomy for the
counting problem was proved in [Bulatov 2013] (substantially simplified in [Dyer and
Richerby 2013]) and for the robust satisfiability problem in [Barto and Kozik 2012b]. A
generalization of the theory for the optimization problem and valued CSPs was given
in [Cohen et al. 2013], and some links to universal algebra are emerging from research
in the area of approximation algorithms (such as [Raghavendra 2008]).

Is this approach only applicable to CSPs over fixed languages? Or are we merely
seeing a piece of a bigger theory?
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Algebra Universalis 60, 3 (2009), 293–307.

Hubie Chen. 2012. Meditations on Quantified Constraint Satisfaction. In Logic and Program Semantics,
Robert L. Constable and Alexandra Silva (Eds.). Lecture Notes in Computer Science, Vol. 7230. Springer
Berlin Heidelberg, 35–49.
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SEM

SEMANTICS COLUMN
MICHAEL MISLOVE, Tulane University
mwm@math.tulane.edu

This issue marks the first “real column” in the Semantics series. I am pleased that
the guest author, Achim Jung, agreed to write this column. Achim is renowned for
his research in denotational semantics, and in particular in domain theory, and he
also established himself as a leader in the UK computer science academic community
during his two terms as Head of Department at the University of Birmingham.

Achim has chosen to focus on pedagogy with a column entitled, “Teaching Denota-
tional Semantics”. Achim played a pivotal role in establishing the Midlands Graduate
School in the Foundations of Computer Science, which runs an annual series of sum-
mer schools and other events. He was instrumental in obtaining initial funding for the
series, assuring its success. Achim uses the course he teaches at the MGS summer
school as a guide for what to include in a denotational semantics course, providing
both a great template from which to work, as well as a clear rationale for why a short
course on denotational semantics should be taught in the way he outlines. It’s an ex-
cellent overview that offers guidance for those who are just starting to teach such a
course, as well as a source of new ideas for those who have an established course al-
ready in hand.

Above and beyond the outline Achim gives us, there is an equally important question
that his column answers: “Why should we teach denotational semantics?” Denotational
semantics courses are fairly well represented in Europe, where the area has its origins.
But on my side of the Atlantic, semantics is relegated to a day, or at best a week,
in programming language courses. Achim’s outline provides a laundry list of reasons
why denotational semantics deserves a full course, offering a number of lessons that
are applicable across the whole range of computer science. For instance, such a course
demonstrates:

— Abstraction: abstracting away from low-level details allows one to treat a problem on
a more abstract level, where it can be understood better and more easily solved. This
teaches students to avoid irrelevant details, and to focus on the issues at the heart of
the problem.

— Modularity: breaking a problem down into subproblems that are easier to solve, and
then using solutions to the subproblems to build a solution to the main problem.
This is one of the great lessons of abstract mathematics that comes to the fore in
denotational semantics.

— Proof techniques: the stock and trade of denotational semantics is proving properties
of programs and it provides numerous proof tools for this purpose. Achim points out
several techniques that are standard components of the approach: structural induc-
tion, term model construction, logical relations and domain theory.
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— Mathematical thinking: using mathematics as both a language in which to phrase
problems precisely, and as a tool kit for solving those problems.

These are some of the benefits of a semantics course for computer science students. As
for mathematics students, Achim argues that they are not interested in such a course.
That may be true, but mathematics students also have a lot to learn from a course
like Achim’s: it demonstrates how mathematics can be used effectively to solve hard
problems in a related discipline. Denotational semantics also offers a great middle
ground between the abstract definition-theorem-proof world of abstract mathematics,
and the reliance on combinatorics and calculations prevalent in complexity theory and
algorithmic analysis. This latter point applies as well for computer science students,
who should find in a semantics course a chance to experience abstract reasoning as a
means for gaining a broader perspective about their discipline, as well as a new suite
of tools to use in solving its problems.
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Teaching Denotational Semantics

Achim Jung, University of Birmingham

1. INTRODUCTION
In 1969 Dana Scott suggested, [Scott 1993], that a Tarskian semantics could be given
to programming languages by employing ordered structures of a certain kind, now
known as domains. One of his key insights was that recursion can be modelled via
the least fixpoint of endofunctions on domains. Shortly afterwards Gordon Plotkin,
explored this proposal further; among the many results of his landmark paper [Plotkin
1977] he formulated and proved computational adequacy, which can be said to justify
Scott’s least-fixpoint semantics. Much of the development of denotational semantics
since then can be traced back to these two papers and few would contest their status
as “classics” of our subject.

50 years later, one would expect to see Scott’s and Plotkin’s work reflected in the
standard syllabus of computer science degrees around the world, on a par with other
classic results of our subject, such as the relationship between automata and lan-
guages, the undecidability of the halting problem, and NP -completeness. This, how-
ever, is not the case, despite a clutch of excellent textbooks appearing in the late 1980s
and early 1990s: [Schmidt 1986; Tennent 1991; Nielson and Nielson 1991; Gunter
1992; Winskel 1993; Mitchell 1996]. Of the many possible reasons for this state of
affairs, I believe the following are the most important: (a) the subject is notationally
subtle and heavy at the same time, (b) students do not have enough mathematical
background, and (c) the “rewards” for the time and effort invested appear limited to
the student.

In this note I want to report on my own experiences of teaching denotational seman-
tics, which has taken place in a variety of contexts and to some very different audi-
ences, with my primary reference point being a five-lecture course delivered as part of
the Midlands Graduate School in the Foundations of Computing Science (MGS), which
since 2001 has taken place annually at one of the four partner universities: Birming-
ham, Leicester, Nottingham, and Sheffield.

My aim here is to present my choice of topics and methodology for these five lectures
in the light of the problems listed above, and to report on the specific experience in
that context. So the focus is on reflection, not on presenting the material in detail and
what follows are not course notes, but I still hope that I will give enough detail so that
a knowledgeable reader may be able to adopt some ideas for their own teaching.

I am grateful to Mike Mislove for giving me the opportunity to present my musings
in the newly established SIGLOG Newsletter and I hope that my example will encour-
age others to use this venue to discuss matters of communicating research as well as
research itself.

2. APPROACH
As I said at the beginning, denotational semantics is a challenging subject to teach,
dealing as it does with an unusually wide range of mathematical ideas and complex
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notations. Students of computer science are typically poorly prepared for such a study,
and students of mathematics are not interested. Both constituencies have difficulties
seeing the point of it all, and this phenomenon is my first main issue: How to motivate
the subject and how to pique students’ interest?

Many texts choose to start with a simple while-language, introduce its denotational
semantics as state-transforming functions and explain the meaning of a while-loop as
a least fixpoint. From a pedagogical point of view, it seems appropriate and correct to
begin with a formalism that is familiar to the students but I’d like to propose that this
is also a key problem: The language is simple and the semantics is hard. However, if
we are to “sell” denotational semantics, then it should be the other way round!

Alternatively, one could begin immediately with PCF; it can be argued, after all,
that it is nothing more than the core of any modern functional programming language
and students can be assumed to have taken a course in that subject before. Thomas
Streicher’s excellent book [Streicher 2006] does exactly that. I have found, however,
that in practice the learning curve is too steep for many in my target audience (which
includes mathematicians as well as computer scientists).

The approach that I have adopted and that I want to advertise here, is the one
that Carl Gunter chose for his textbook [Gunter 1992]. In a nutshell, the idea is to
discuss the semantics of the simply typed lambda calculus as a primer for PCF. Apart
from offering a gentler path towards domain semantics and the adequacy proof, it lays
the foundation for other subjects that students may want to study, in particular, type
theory.

No doubt, from a pedagogical perspective Gunter’s approach has many inherent
problems of its own — and one aim of this note is to discuss those — but there are
many attractive features which tip the balance in its favour. Foremost, the presen-
tation can be motivated by the desire to prove theorems about calculi. Without going
into any detail, these concern compositionality, soundness, completeness, definability,
adequacy, and extensionality. The methods employed in the proofs are themselves rich
and varied, and they are ubiquitous in denotational semantics: proof by structural in-
duction, term model construction, logical relations and domain theory. In fact, their
applicability is not confined to denotational semantics and one of the joys of teach-
ing at the Midlands Graduate School is to see these themes and methods emerge in
different courses.

This emphasis on theorems marks me out as a mathematician, I admit, and it does
not work for everyone. As an alternative motivation that may work better for more
practically-minded computer science students, I’d like to advertise the approach that
Martı́n Escardó has successfully tried at the Midlands Graduate School. He begins by
writing down the PCF term for the “Gandy–Berger functional”, [Berger 1990], which
tests whether a predicate on Cantor space (the latter implemented as int → bool) is
satisfiable. The term is small but quite incomprehensible and Martı́n’s point is that it
is not clear at all that it must terminate for total predicates. He then goes fairly deeply
into the domain semantics of PCF and develops the topological machinery that one
needs for the termination proof. The Gandy-Berger functional is not just a pedagogical
device; it appears, for example, in Alex Simpson’s implementation of exact real number
integration, [Simpson 1998].

Returning to my approach, a second key argument for beginning with the lambda
calculus is that despite its similarity to functional programming, still appears suffi-
ciently “foreign” to students so that giving a semantics seems appropriate; in other
words, the language is “hard,” and it remains to make sure that the semantics is (or
appears) “easy.” Here we take advantage of the fact that the simply-typed lambda cal-
culus only requires ordinary functions for its semantics, and that the discussion of
partiality and fixpoints can be deferred to the second part when we talk about PCF.

ACM SIGLOG News 28 October 2014, Vol. 1, No. 2



This goes some way to address Problem (b) mentioned in the Introduction, the lack of
mathematical knowledge in our target audience.

Disappointingly, for the first problem — the notational complexity so typical of de-
notational semantics — I cannot offer a silver bullet, as that’s just the way things are.
However, we have an advantage when we are giving lectures as often some detail can
be said rather than written down, and sometimes, it can even be suppressed entirely.
Since I don’t use slides but always present with the help of the board only, it is abso-
lutely essential for me to simplify as much as possible. I’d like to propose that this is
actually a very good thing, because students need to see how we practitioners organise
the material for ourselves, how we keep on top of the notations, what we emphasise
and what we neglect.

3. LECTURE I: THE SIMPLY TYPED λ-CALCULUS

I usually begin the lectures with a discussion of different approaches to semantics,
relating them to the ways in which a child learns the meaning of words. The denota-
tional approach is perhaps the most natural one: pointing to a dog and simultaneously
saying the word “doggie” to the child. There is already an interesting point to be made,
in that the “objects” which our chosen calculus denotes are sets and functions, and
these do not have any physical representation we can point to but are a construction
of our (mathematical) mind expressed in mathematical language. It follows that de-
notational semantics does not feel denotational at all but in essence comes down to a
translation from a syntactic calculus to mathematical language. (Translation is what
we use when we learn a foreign language but clearly not when we learn the first words
from our parents.) I think it is important to confront this issue head on at the very
beginning because it is one that tends to confuse and even confound learners when
they encounter semantic definitions for the first time. One can then make the point
that even straightforward translation can be useful if the languages involved are suf-
ficiently different, and that one should feel entitled to question why the particular
translation that denotational semantics offers provides any insight at all. I also stress
that it is theorems we are after, not just alternative descriptions, and that the onus is
on me to demonstrate that the theorems we will prove are interesting and useful.

At the Midlands Graduate School, my course is usually complemented with a con-
current one on the lambda calculus, so my introduction to the language can be brief.
But even without that support, it is not too hard to present the syntax to an audience
of beginning PhD students. There are, after all just two clauses to the definition of
simple types and three to the definition of terms.

However, the issue of variable binding is much more subtle than it may appear to
the students, and we know now that our best semantic accounts require a formidable
mathematical apparatus. We don’t yet know whether it is possible to present these in
the context of an introductory lecture course, so for the time being we must stick to the
tried and tested ways of keeping the problems of binding under control.

Given the constraints of a rather short lecture course, I have come to the conclusion
that Church’s original formalism is the most appropriate. In it each variable has a
fixed type, which may be part of the name (as in xσ) or which may be accessed via
a global type assignment function: type(x) = σ. The only proviso one needs to make
(and the reason for it becomes clear early on in the course) is that there should be an
unbounded number of variables for every type. This is the approach that one finds in
[Winskel 1993, Chapter 11] and also [Plotkin 1977], for example.

While it is clear that Church’s calculus is the most economical available, see Fig-
ure 1, it may still be worthwhile to spend some time here to ponder its pros and cons
more generally as well as those of the alternatives.
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xσ : σ

M : σ → τ N : σ

MN : τ

M : τ

λxσ .M : σ → τ

Fig. 1. The term formation rules of the simply typed lambda calculus in Church style

x ̸∈ dom(∆)

Γ, x : σ,∆ ⊢ x : σ

Γ ⊢ M : σ → τ Γ ⊢ N : σ

Γ ⊢ MN : τ

Γ, x : σ ⊢ M : τ

Γ ⊢ λx.M : σ → τ

Fig. 2. The term formation rules of the simply typed lambda calculus in Curry style

One of its disadvantages is that apart from FORTRAN it has not been adopted in any
practical programming language. A more serious objection is that the approach does
not generalise to more sophisticated type systems. Regarding the last point, there is
little I can say in defence of my choice other than to reiterate the point that formalisms
should be introduced as and when they are needed, and they should not be allowed to
dominate the presentation.

If nevertheless a Curry-style presentation with explicit type environments is chosen,
then it seems to me that one should go the full mile and deal with them as one does in
actual programming languages and in type theory, that is, type environments are lists
and later declarations of a variable override those that come earlier, a phenomenon
known as shadowing. The machinery required to make this work is formidable but at
least it is honest. One has to talk explicitly about “structural rules”, that is, weakening,
exchange and duplication of type assumptions although that may not be apparent from
the term formation rules, Figure 2, but they will be necessary for a discussion of the
equational theory.

I don’t know of any textbook on denotational semantics that goes down this route,
and I agree that dealing with type contexts is probably not a core concern of denota-
tional semantics, but the various compromises that one finds are not very convincing
either: One common assumption, for example, is that terms are really only represen-
tatives of their α-equivalence classes and semantics is given to the latter rather than
the former. Pedagogically, this seems to me problematic as it amounts to the admission
that we can’t model the original concrete language, and it means that semantic con-
siderations have encroached on the syntax and made it less realistic. Another device
that appears in the literature is to say that typing contexts are sets and to require that
x ̸∈ dom(Γ) in the formation rule of lambda abstraction, but this is credible only if one
is dealing with α-equivalence classes, as nested occurrences of the same variable may
appear after β-reduction even if this was not the case at the outset.

After this digression, let us return to the material that I do present. The semantics
of types is the usual one: an arbitrary set Aι is chosen for the ground type ι and
function types are interpreted by the set of all functions. Semantic environments ρ are
functions from a set of variables to their respective semantic domains. The semantic
function !−"ρ is defined for those terms of the language whose set of free variables is
contained in the domain of ρ.

As another aside for the cognoscenti, in the chosen presentation the semantic value
of a term M of type σ in a semantic environment ρ is an element of the set Aσ. For the
completeness proof that follows, and also for the discussion of PCF, this is the most
convenient approach. One could call this the model-theoretic point of view. If typing
contexts are made explicit, then we give semantics to judgements Γ ⊢ M : σ, not to
terms, and the semantic values are always functions from !Γ" to !σ" = Aσ; we could
call this the categorical point of view.
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The semantic clause for lambda abstraction reads

!λx : σ.M "ρ = a ∈ Aσ "→ !M"(ρ, x "→ a)

which more obviously alludes to the mathematical view of a function as a set of ordered
pairs than the “semantic lambda” that one sometimes finds. On the other hand, this
plays down the (important) view that a denotational semantic function should be a
homomorphism from the language to the model. This is a subtle point and I wish I
were able to express more clearly and convincingly why I find my formulation more
appropriate.

After presenting the three semantic clauses one has the first opportunity to mention
the principle of compositionality as the semantics is pieced together from the semantic
values of the parts. It is important to point out, however, that the matter is slightly
more subtle than this because the semantics of a lambda abstraction λx.M makes
reference to the semantics of M in a different semantic environment.

Also, this is a good time to pause and to explain the two views of the semantics that
has been defined:

— If our primary interest is in the calculus, then we have given a model for the calculus
employing sets and mathematical functions. Once we have introduced equations for
the calculus, we can then ask whether the model validates the equations (soundness)
and whether the equations capture equality in the model (completeness).

— If the primary interest is in mathematical functions, then we may view the simply-
typed lambda calculus as a language for these. The natural question then is how
expressive this language is.

4. LECTURE II: SOUNDNESS

Presenting the eight rules for deriving equalities between lambda terms is straight-
forward, except that one has to be able to write very fast on the board. However, not
having to deal with typing contexts helps, and even the types of the terms themselves
can be suppressed because there is no need to repeat the rules for typing a term. Know-
ing the type of a term is necessary only in the case of (η).

The rules come in three groups; first the three rules that establish that ≈ is an
equivalence relation:

M ≈ M

M ≈ N

N ≈ M

M ≈ N N ≈ P

M ≈ P
Then the two congruence rules:

M ≈ M ′ N ≈ N ′

MN ≈ M ′N ′

M ≈ M ′

λx.M ≈ λx.M ′

Finally, the three rules specific to the lambda calculus:

y ̸∈ var(M)
(α)

λx.M ≈ λy.M [y/x]
(β)

(λx.M)N ≈ M [N/x]

M : σ → τ xσ ̸∈ var(M)
(η)

M ≈ λxσ .Mx

Again, since α is not “built into” my version of the calculus, we have a rule for it; in a
first course on semantics, I view this as an advantage.

One can then start to prove the soundness theorem and find that neither (α) nor (β)
have an obvious proof because substitution is not a connective of the calculus. This is
yet another opportunity to return to the theme of the semantic function as a homomor-
phism.

I then present a precise definition of substitution for terms (taken from [Hindley and
Seldin 1986]) and go through some of the cases of the proof of the substitution lemma.
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The critical one is of course when a bound variable needs to be renamed, that is, we
want to compute !(λy.M)[N/x]" in the situation that y ∈ FV(N). The substitution rules
stipulate that (λy.M)[N/x] be rewritten to λz.M [z/y][N/x] where z ̸∈ {x} ∪ FV(M) ∪
FV(N). The computation of the semantics of this takes a number of steps but it is
satisfying for the students to see how everything fits together:

!λz.M [z/y][N/x]"ρ
= a $→ !M [z/y][N/x]"(ρ, z $→ a) (definition of !λ . . .")
= a $→ !M [z/y]"(ρ, z $→ a, x $→ !N"(ρ, z $→ a)) (induction hypothesis, x ̸= z)
= a $→ !M [z/y]"(ρ, z $→ a, x $→ !N"ρ) (Lemma, z ̸∈ FV(N))
= a $→ !M"(ρ, z $→ a, x $→ !N"ρ,

y $→ !z"(ρ, z $→ a, x $→ !N"ρ)) (induction hypothesis)
= a $→ !M"(ρ, z $→ a, x $→ !N"ρ, y $→ a) (definition of !z")
= a $→ !M"(ρ, x $→ !N"ρ, y $→ a) (z ̸∈ FV(M))
= !λy.M"(ρ, x $→ !N"ρ) (definition of !λ . . .")

The computation shows that the identity of the fresh variable z is immaterial for the
result to hold, which goes some way to address any concerns that students might have
over the fact that substitution on terms is not a deterministic operation. If there is
time, then one can usefully insert a brief discussion of binding diagrams (where bound
variables are replaced by arrows to the binding lambda) as an alternative “syntax.”
The substitution lemma is then almost a complete triviality and its proof immediately
apparent from the following picture

N

M

One can use this visualisation to re-enforce the principle of compositionality.
The soundness proof is then soon completed and there is usually still time left to in-

troduce general Henkin models, the idea being that we may not need all set-theoretic
functions for the interpretation of lambda abstractions, although the students have no
reason to believe this at this point. One can also come back to the view of the semantic
function as a homomorphism, as Henkin models are defined as certain multi-sorted
algebras with explicit application operators. (Here I am following [Mitchell 1996, Sec-
tion 4.5].)

5. LECTURE III: COMPLETENESS

The aim of this lecture is to prove Friedman’s completeness theorem which states that
the full set-theoretic model built over an infinite set (for example N) is complete with
respect to αβη-equality. It proceeds in two stages, first a term model construction is
used to show that the equational rules are complete with respect to general Henkin
models, and then a relation between the term model and the full set-theoretic model
establishes completeness with respect to the latter.

In the construction of the term model T our choice of a Church-style presentation
comes in handy: The “material” from which the semantic domains are built are truly
the terms of our calculus, that is, Tσ consists of equivalence classes of (open) terms of
type σ, and for every σ there are at least the (countably infinitely many) variables of
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that type to start from. We write the equivalence classes with respect to the basic αβη
theory as ⟨M⟩ and define application by

app ⟨M⟩ ⟨N⟩ = ⟨MN⟩

One now has to show that a Henkin model is thus obtained, that is, we need to show
extensionality and “richness” of the function types. For the former, we exploit the fact
that we have an unbounded supply of variables, and we use the η-law:

∀N : app ⟨M⟩ ⟨N⟩ = app ⟨M ′⟩ ⟨N⟩ assumption
app ⟨M⟩ ⟨x⟩ = app ⟨M ′⟩ ⟨x⟩ choose N = x fresh

⟨Mx⟩ = ⟨M ′x⟩ definition of app
⟨λx.Mx⟩ = ⟨λx.M ′x⟩ congruence rule for lambda

⟨M⟩ = ⟨M ′⟩ η

Showing that for every type σ → τ we have enough elements in Aσ→τ requires us to
show that the semantics in this model amounts to simultaneous substitution:

!M"ρ = ⟨M [r]⟩

where r is a map that picks out an element of ρ(x) for every variable x in the domain
of ρ. The proof is by induction on the structure of M . Here is the case of lambda ab-
straction: Assume type(x) = σ; we have

!λx.M "ρ = ⟨N⟩ ∈ Tσ &→ !M"(ρ, x &→ ⟨N⟩)

by definition of !−". We need to show that the function on the right hand side behaves
the same as the element ⟨(λx.M)[r]⟩ to which end we apply it to an element ⟨N⟩ ∈ Tσ:

app ⟨(λx.M)[r]⟩ ⟨N⟩
= app ⟨λx′.M [x′/x][r, x′ → x′]⟩ ⟨N⟩ x′ fresh
= ⟨(λx′.M [x′/x][r, x′ → x′])N⟩ definition of app in T
= ⟨M [x′/x][r, x′ → x′][N/x′]⟩ β
= ⟨M [r, x → N ]⟩

and we see that despite our attempts to simplify things we have plenty of notational
fiddliness still to deal with!

Completeness now follows easily by considering the semantic environment that
maps every variable x to its αβη equivalence class ⟨x⟩.

Students are unlikely to have seen a completeness proof in full before and one should
therefore take the opportunity to point out that the generality of the method. Also,
although one has to be careful with the details, it is in my view a very worthwhile and
satisfying exercise to see how each and every equation has its role to play in the proof.

For the second stage of the proof of Friedman’s completeness theorem we return to
the full set-theoretic model N built over !ι" = N. Friedman’s proof uses a “partial sur-
jective homomorphism h” from N to the term model T but a more fruitful perspective
is to regard the graph of h as a logical relation. So at this point I introduce logical re-
lations between two Henkin models and prove the fundamental lemma, which doesn’t
take very long.

If there is sufficient time, one can generalise this to logical relations of arbitrary
arity, and discuss the lambda definability problem (and Ralph Loader’s undecidability
result). If there isn’t, then this is still a worthwhile topic to explore in the exercises.

In any case, having established the fundamental lemma for logical relations, one
may now swiftly finish Friedman’s proof of the completeness of N by showing that a
logical relation between N and T , which happens to be a surjective function at ground
type, will be functional and surjective at every type (though it will be a partial func-
tion).
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0, 1, . . . : int
succ,pred : int → int

zero? : int → bool
ifσ : bool → σ → σ → σ
Yσ : (σ → σ) → σ

Fig. 3. The constants of PCF

6. LECTURE IV: PCF

From the discussion of expressivity in the previous lecture, it is easy to reiterate the
point that the simply typed lambda calculus is far too parsimonious to be considered
a language for describing functions (and higher-order functions) on the natural num-
bers, making the step to PCF easy and natural. All the constants of PCF are readily
introduced, see Figure 3. However, I usually defer talking about Y until I have pre-
sented the rewrite rules for the other constants. Again, these are easily motivated by
the desire to compute normal forms. I use the small-step presentation from Plotkin’s
original paper [Plotkin 1977], where each rule may be seen as a refinement of an equa-
tion as discussed previously. In fact, small-step semantics appears so natural that it
is worthwhile for the students to get a chance — perhaps in the exercises — to reflect
on how one might implement the rewriting process in practice (and to contrast it with
the algorithm derived from the big-step presentation). In the lectures we use M ⇓ n
purely as a shorthand for a finite sequence of rewrite steps that ends in n.

As we arrive at the heart of the course — the semantics of recursion — we take
time to discuss the constant(s) Y and how they are used to represent recursion. I begin
by pointing out that the way we get a recursive program in ordinary programming
languages is always by naming terms, something that PCF does not provide. For non-
recursive terms, naming would be just a convenience — a case of Landin’s syntactic
sugar — but in a recursive term this is not so. A recursive term declaration such as

f = λx. if zero? x then 1 else x ∗ f(pred x)

is really an equation for the unknown f . It is not a general equation M = N , but one
where the left-hand side is the unknown itself, that is, it has the shape of a fixpoint
equation. Making this explicit amounts to introducing a function on the right-hand
side:

f = (λg.λx. if zero? x then 1 else x ∗ g(pred x)) f

If this function is abbreviated to M , then the fixpoint equation has the form f = Mf .
We may now introduce YM as a purely formal name for the solution to this equation,
just like the imaginary constant i is a purely formal name for a solution to x2 = −1.
Nothing needs to be known about YM other than that it may be replaced by M(YM)
wherever it is encountered; again, this is in analogy to the way students learned to
manipulate i in high school: Nothing needs to be known about it except that i2 may
always be replaced by −1.

I believe it is very useful for students to see how this works in practice, by reducing
a term such as the one above for some concrete value of x, for example, YM 2. In the
exercises one can then go a bit further and ask the students to implement primitive
recursive functions in PCF, and likewise µ-recursion. It is a useful insight for them to
see that the former requires terms of rank 2 only, while µ-recursion requires rank 3.
This opens up an interesting line of thought regarding the differences between Turing-
machine computability (which the students should be familiar with) and higher-order
computability.
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To continue the motivational journey from recursive definitions to the constant Y ,
one now needs to realise that the way we treat the “formal terms” YM is captured
by a rewrite rule for Y that is no different in structure from those for the other PCF
constants. One then sees that the semantics of this constant amounts to a functional
that returns a fixpoint for every (definable) endofunction. I believe it is important to
spend some time on this point and to make it clear that by introducing Y we are
postulating that every (fixpoint) equation has a solution, something that is certainly
not true in mathematics. One can quite usefully contemplate why this should be the
case in computer science, and one valid point of view is indeed that it doesn’t hold there
either.

So now that we have all components of the language, we turn to the semantics. Given
the training the students have had with the simply typed lambda calculus, very little
time needs to be spent on the semantics of PCF minus Y , in other words, one can cut
straight to the chase and explain the difficulties one has with interpreting Y in the
usual full set hierarchy N where functions do not need to have fixpoints.

This brings us to domain theory, introduced as an abstraction of the idea of inter-
preting function types as partial rather than total functions. Without going into the
detail of this “partial function model,” one can introduce the order between them (as
containment of the function graphs) and observe that a programmable function should
preserve it.

One then shows how partial functions can be replaced by total ones into a “lifted
set,” that is, a flat domain. But then all sets should be lifted and by looking at the
Booleans, one finds that while there are only nine partial functions from B to B, there
are 11 monotone and total functions from B⊥ to B⊥. This provides an opportunity to
talk about strictness and CBV vs CBN.

Next we look at [N⊥ → N⊥], again comparing this to the partial function space
[N ⇀ N] and see that its order structure is much richer. This is the moment to de-
fine abstractly the notion of an ω-chain-complete partial order, or ccpo, and that of an
ω-chain-continuous function.

The four key theorems to prove are (a) that the function space of two ccpos is again
a ccpo, (b) that application and abstraction are continuous functions, (c) that every
continuous function has a fixpoint, and (d) that the fixpoint map itself is continuous. I
am embarrassed to admit that of these I only ever manage to prove (c) in any detail. It
is good material for the exercise class, though.

I stress to the students that because of (a) and (b), ccpos and ω-chain-continuous
functions are the third example of a Henkin model for the simply typed lambda calcu-
lus, after the full set hierarchy and the term model.

As an aside, it is a fact that continuity is not necessary for the adequacy proof but it
is of course much harder to prove that monotone functions have fixpoints, which would
require either transfinite induction or otherwise the clever argument of Pataraia. Both
can be considered in the exercises.

7. LECTURE V: ADEQUACY AND THE CONTEXT LEMMA

This lecture starts with pointing out that one should not expect an axiomatisation
of the equational theory induced by the domain model for PCF, as this would entail
solving the halting problem. On the other hand, the equations that we do have, all
have been refined to rewrite rules, so we can talk about computation as reduction to
normal form (again, it may be helpful to point out that we could have done the same
for the simply typed lambda calculus). Correctness is still an issue but it can be dealt
with swiftly. Completeness, on the other hand, is available at ground type only and
now takes the rather interesting form of adequacy:
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Theorem. If P is a closed term of type int and if !P " = n ∈ N then P reduces to n in
finitely many steps.

In class, the proof is given in full and uses the well-known “logical relation” tech-
nique (which, I am told, has indeed a long history). For a closed term M of ground type
(let’s restrict attention to the integers from now on) and a ∈ N⊥, one defines

(a,M) ∈ Rint iff a = ⊥ or (a = n and M ⇓ n)

This is extended to higher types as usual:

(f,M) ∈ Rσ→τ iff ∀N : σ closed and a ∈ Aσ. (a,N) ∈ Rσ =⇒ (f(a),MN) ∈ Rτ

We now proceed by the following simple steps:

Lemma. ⊥ R M always.

Lemma. If M ′ → M and a R M then a R M ′.

Lemma. If ai R M for the elements of a chain a0 ⊑ a1 ⊑ . . . then
⊔
ai R M .

It is in the proof of the last lemma where we notice that we only need that sups
of functions are computed pointwise but not that functions are continuous. In other
words, the proof would go through if we built our model with functions which are only
required to be monotone, an observation which I learned from Alley Stoughton.

The three lemmas allow us to show the following, which has the same shape as the
fundamental lemma for logical relations:

Lemma. If M is closed, then !M" R M .

The proof is by induction over the structure of M (so we need to extend R to open
terms) whereas the others are by induction over the type, the key steps being lambda
abstraction and the fixpoint combinator. Adequacy then follows immediately from this
and the definition of R.

The final highlight of the course is a demonstration that the semantics can be in-
voked to show Milner’s context lemma. So we introduce contexts as “terms with holes”
and the contextual preorder !. The key to the argument is to employ the relation R
from the adequacy proof:

Lemma. Let M,M ′ be closed and of type σ = σ1 → σ2 → . . . → σk → int. Then the
following are equivalent:

(1) M ! M ′

(2) ∀P closed. PM ⇓ n =⇒ PM ′ ⇓ n
(3) ∀N1, . . . , Nk closed.MN1 . . . Nk ⇓ n =⇒ M ′N1 . . . Nk ⇓ n
(4) !M" R M ′

The proof is so elegant that it is worthwhile to spell it out in full:

PROOF. (1) ⇔ (2) It is possible to treat the “hole” in a context as if it were a variable
because M and M ′ are assumed to be closed.
(3) is a special case of (2), consider P = λx.xN1 . . . Nk.
(3) ⇒ (4) Use the definition of the logical relation: Let ai R Ni for i ∈

{1, . . . , k} and consider M ′N1 . . . Nk and !M"(a1) . . . (ak). We want to show that
!M"(a1) . . . (ak) is in relation to M ′N1 . . . Nk. We know that !M" R M and hence
!M"(a1) . . . (ak) R MN1 . . . Nk. There are two cases:

— If !M"(a1) . . . (ak) = ⊥ then !M"(a1) . . . (ak) R M ′N1 . . . Nk by definition.
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— If !M"(a1) . . . (ak) = n then again by the definition of R: MN1 . . .Nk ⇓ n, and hence
M ′N1 . . . Nk ⇓ n by assumption. In this case, too, !M"(a1) . . . (ak) R M ′N1 . . . Nk

follows.

(4) ⇒ (2) Let P be closed. We have !P " R P , hence !PM" = !P "(!M") R PM ′ by
assumption. Now if PM ⇓ n then by correctness !PM" = n. By the definition of R,
PM ′ ⇓ n follows.

The course ends by pointing the students to the classic texts by Scott [Scott 1993]
and Plotkin [Plotkin 1977], as well as to the textbooks mentioned above, and especially
[Streicher 2006] for a continuation of the story begun in this course.

8. CONCLUDING REMARKS

If you have taught denotational semantics yourself, you will have made different
choices and you will have had different experiences. I’d love to hear from you! If you
agree or disagree with the particular choices I have presented here, then I’d love to
hear from you, too! Perhaps you have suggestions for making the subject more inter-
esting or more tractable still; that would also be welcome.

I should like to end by expressing my gratitude to the many colleagues and students
(especially here at Birmingham) with whom I have discussed the contents of my course
over the years, and I ask for forgiveness from those from whom I have taken an idea
without giving proper credit. Most of all, I am indebted to Dana Scott and Gordon
Plotkin for laying the foundation for this beautiful subject.
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formal frameworks that aim at providing the basis for deeper theoretical investigation
of important emerging issues in data management; and (3) validation of theoretical
approaches from the lens of practical applicability in data management.

TOPICS. Topics that fit the interests of the symposium include the following (as they
pertain to databases): design, semantics, optimization; data modeling; data structu-
res and algorithms; tree- and graph-structured data; search; information retrieval;
approximation; model theory; logics; algebras and complexity; dynamic aspects; foun-
dations of ”big data ,and śmall data”; data analytics; streaming, real-time, and sensor
data; processes, workflows, web services; verification and synthesis; incompleteness;
inconsistency; uncertainty; constraints; metadata; semantic, linked, networked, and
crowdsourced data; data and knowledge integration and exchange; distribution and
parallelism; cloud computing; domain-specific data; mining and learning; privacy; se-
curity; provenance.

IMPORTANT DATES.

— Cycle 1: Abstract 3 Oct 2014; Paper 10 Oct 2014; Notif 19 Dec 2014; Revised paper
30 Jan 2015; Notif 9 Mar 2015

— Cycle 2: Abstract 28 Nov 2014; Paper 5 Dec 2014; Notif 20 Feb 2015;

Camera ready for both cycles: 22 Mar 2015

EUROPEAN JOINT CONFERENCES ON THEORY AND PRACTICE OF SOFTWARE (ETAPS)
Call for Papers
April 11-19, 2015
London, UK
http://www.etaps.org

IMPORTANT DATES.

— Abstracts due: 10 October 2014 AoE
— Papers due: 17 October 2014 AoE
— Rebuttal (ESOP and FoSSaCS only): 3-5 December 2014
— Author notification: 19 December 2014
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— Camera-ready versions: 16 January 2015

SUBMISSION INSTRUCTIONS. ETAPS conferences accept two types of contributions: re-
search papers and tool demonstration papers. Both types will appear in the pro-
ceedings and have presentations during the conference. (TACAS has more cate-
gories, see below.) A condition of submission is that, if the submission is accep-
ted, one of the authors attends the conference to give the presentation. Submit-
ted papers must be in English presenting original research. They must be unpu-
blished and not submitted for publication elsewhere. In particular, simultaneous
submission of the same contribution to multiple ETAPS conferences is forbidden.
The proceedings will be published in the Advanced Research in Computing and So-
ftware Science (ARCoSS) subline Springer’s Lecture Notes in Computer Science se-
ries. Papers must follow the formatting guidelines specified by Springer at the URL
http://www.springer.de/comp/lncs/authors.html and be submitted electronically in
pdf through the Easychair (HotCRP) author interface of the respective conference.
Submissions not adhering to the specified format and length may be rejected imme-
diately.

RESEARCH PAPERS. Different ETAPS 2015 conferences have different page limits. Spe-
cifically, FASE, FOSSACS and TACAS have a page limit of 15 pages, whereas CC,
ESOP and POST allow at most 20 pages. Additional material intended for reviewers
but not for publication in the final version - for example, details of proofs - may be pla-
ced in a clearly marked appendix that is not included in the page limit. ETAPS revie-
wers are at liberty to ignore appendices and papers must be understandable without
them. TACAS solicits not only regular research papers, but also case study papers.

TOOL DEMONSTRATION PAPERS. Submissions should consist of two parts. The first part,
at most 4 pages, should describe the tool presented. Please include the URL of the tool
(if available) and provide information that illustrates the maturity and robustness of
the tool (this part will be included in the proceedings). The second part, at most 6 pa-
ges, should explain how the demonstration will be carried out and what it will show,
including screen dumps and examples. (This part will be not be included in the proce-
edings, but will be evaluated.) ESOP and FOSSACS do not accept tool demonstration
papers. In addition to tool demonstration papers (max 6 pages in their case), TACAS
solicits also longer tool papers (max 15 pages) adhering to specific instructions about
content and organization.

EDBT/ICDT 2015 JOINT CONFERENCE
Call for Tutorials
March 23-27, 2015
Brussels, Belgium
http://edbticdt2015.be/index.php/edbt-icdt-call-for-tutorials

SERIES. The EDBT series of conferences is an established and prestigious forum for
the exchange of the latest research results in data management. The series of ICDT
conferences provides an international forum for the communication of research advan-
ces on the theoretical foundations of database systems.

TUTORIALS. We solicit proposals for tutorials for presentation at the EDBT/ICDT joint
conference. Proposals must provide an in-depth survey of the chosen area with the
option of describing some particular pieces of work in detail. Proposals must be no more
than four pages, in the ACM double-column format used for EDBT/ICDT submissions,
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and must include enough details to provide a sense of both the scope of material to be
covered and the depth to which it will be covered.

IMPORTANT DATES.

— Submission of proposals for tutorials: 7 November 2014
— Notification to authors: 12 December 2014
— Conference: March 23-27, 2015

Please submit your proposals (in PDF) via e-mail to the Tutorial Chair, Pablo Barcelo
(pbarcelo@dcc.uchile.cl).

7TH NASA FORMAL METHODS SYMPOSIUM (NFM 2015)
Call for Papers
27-29 April 2015
Pasadena, California, USA
http://www.NASAFormalMethods.org/nfm2015

THEME. The widespread use and increasing complexity of mission- and safety-critical
systems require advanced techniques that address their specification, verification, va-
lidation, and certification. The NASA Formal Methods Symposium is a forum for the-
oreticians and practitioners from academia, industry, and government, with the goals
of identifying challenges and providing solutions to achieving assurance in mission-
and safety-critical systems. Within NASA such systems include for example autono-
mous robots, separation assurance algorithms for aircraft, Next Generation Air Trans-
portation (NextGen), and autonomous rendezvous and docking for spacecraft. More-
over, emerging paradigms such as property-based design, code generation, and safety
cases are bringing with them new challenges and opportunities. The focus of the sym-
posium will be on formal techniques, their theory, current capabilities, and limitations,
as well as their application to aerospace, robotics, and other mission- and safety-critical
systems in all design life-cycle stages. We encourage submissions on cross-cutting ap-
proaches marrying formal verification techniques with advances in critical system de-
velopment, such as requirements generation, analysis of aerospace operational con-
cepts, and formal methods integrated in early design stages and carrying throughout
system development.

TOPICS. Topics of interest include, but are not limited to: Model checking, Theorem
proving, SAT and SMT solving, Symbolic execution, Static analysis, Runtime verifica-
tion, Program refinement, Compositional verification, Modeling and specification for-
malisms, Model-based development, Model-based testing, Requirement engineering,
Formal approaches to fault tolerance, Security and intrusion detection, Applications of
formal methods to aerospace systems, Applications of formal methods to cyber-physical
systems, Applications of formal methods to human-machine interaction analysis.

IMPORTANT DATES.

— Paper Submission: 10 Nov 2014
— Paper Notifications: 12 Jan 2015
— Camera-ready Papers: 9 Feb 2015
— Symposium: 27-29 April 2015

LOCATION AND COST. The symposium will take place at the Hilton Hotel, Pasadena,
California, USA, April 27-29, 2015. There will be no registration fee for participants.
All interested individuals, including non-US citizens, are welcome to submit, to attend,
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to listen to the talks, and to participate in discussions; however, all attendees must
register.
SUBMISSION DETAILS. There are two categories of submissions: Regular papers descri-
bing fully developed work and complete results (15 pages) Short papers describing
tools, experience reports, or descriptions of work in progress with preliminary results
(6 pages) All papers should be in English and describe original work that has not been
published or submitted elsewhere. All submissions will be fully reviewed by members
of the Programme Committee. Papers will appear in a volume of Springer’s Lecture
Notes on Computer Science (LNCS), and must use LNCS style formatting. Papers sho-
uld be submitted in PDF format.
PC CHAIRS.

Klaus Havelund, NASA Jet Propulsion Laboratory
Gerard Holzmann, NASA Jet Propulsion Laboratory
Rajeev Joshi, NASA Jet Propulsion Laboratory

30TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2015)
Call for Papers
July 6-10, 2015
Kyoto, Japan
http://lics.rwth-aachen.de/lics15/

(colocated with ICALP 2015)
AIMS. The LICS Symposium is an annual international forum on theoretical and prac-
tical topics in computer science that relate to logic, broadly construed. We invite sub-
missions on topics that fit under that rubric. Suggested, but not exclusive, topics of
interest include: automata theory, automated deduction, categorical models and lo-
gics, concurrency and distributed computation, constraint programming, constructive
mathematics, database theory, decision procedures, description logics, domain theory,
finite model theory, formal aspects of program analysis, formal methods, foundations
of computability, higher-order logic, lambda and combinatory calculi, linear logic, logic
in artificial intelligence, logic programming, logical aspects of bioinformatics, logical
aspects of computational complexity, logical aspects of quantum computation, logical
frameworks, logics of programs, modal and temporal logics, model checking, probabili-
stic systems, process calculi, programming language semantics, proof theory, real-time
systems, reasoning about security and privacy, rewriting, type systems and type the-
ory, and verification.
INSTRUCTIONS. Authors are required to submit a paper title and a short abstract of
about 100 words in advance of submitting the extended abstract of the paper. The
exact deadline time on these dates is given by anywhere on earth (AoE).

— Title and Short Abstracts Due: January 12, 2015
— Extended Abstracts Due: January 19, 2015
— Author Feedback/Rebuttal Period: March 12-16, 2015
— Author Notification: March 30, 2015
— Final Versions Due for Proceedings: April 27, 2015
Deadlines are firm; late submissions will not be considered. All submissions will
be electronic via https://www.easychair.org/conferences/?conf=lics2015. Every
extended abstract must be submitted in the IEEE Proceedings 2-column 10pt format
and may not be longer than 10 pages, including references. LaTeX style files are ava-
ilable from the website.
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CONFERENCE CHAIR. Masahito Hasegawa, RIMS, Kyoto U.
PROGRAM COMMITTEE CHAIR. Catuscia Palamidessi, INRIA & E. Polytechnique
WORKSHOP CHAIR. Patricia Bouyer-Decitre, CNRS & ENS Cachan
GENERAL CHAIR. Luke Ong, U. Oxford
SHORT PRESENTATIONS. A session of short presentations, intended for descriptions
of student research, works in progress, and other brief communications, is planned.
These abstracts will not be published. Dates and guidelines will be posted on the con-
ference website.
KLEENE AWARD FOR BEST STUDENT PAPER. An award in honor of the late Stephen C.
Kleene will be given for the best student paper(s), as judged by the program committee.
SPECIAL ISSUES. Full versions of up to three accepted papers, to be selected by the
program committee, will be invited for submission to the Journal of the ACM. Additio-
nal selected papers will be invited to a special issue of Logical Methods in Computer
Science.
SPONSORSHIP. The symposium is sponsored by ACM SIGLOG and the IEEE Technical
Committee on Mathematical Foundations of Computing, in cooperation with the As-
sociation for Symbolic Logic and the European Association for Theoretical Computer
Science.

4TH INTERNATIONAL CONFERENCE ON TOOLS FOR TEACHING LOGIC (TTL 2015)
Call for Papers
June 1-4, 2015
Rennes, France
http://ttl2015.irisa.fr/

TOPICS. Topics that fit the interests of Tools for Teaching Logic include (but are not
limited to): teaching logic in sciences and humanities; teaching logic at different le-
vels of instruction (secondary education, university level, and postgraduate); didactic
software; facing some difficulties concerning what to teach; international postgradu-
ate programs; resources and challenges for e-Learning Logic; teaching Argumentation
Theory, Critical Thinking and Informal Logic; teaching specific topics, such as modal
logic, computability and logic, and others; dissemination of logic courseware and logic
textbooks; teaching Logic Thinking.
IMPORTANT DATES.

— Paper submission: 18 Jan 2015;
— Notification: 1 Mar 2015;
— Final camera-ready due: 29 Mar 2015.

13TH INTERNATIONAL CONFERENCE ON LOGIC PROGRAMMING AND NON-MONOTONIC
REASONING (LPNMR 2015)

Preliminary Call for Papers
Lexington, KY, USA
September 27-30, 2015
http://lpnmr2015.mat.unical.it/

(Collocated with the 4th Conference on Algorithmic Decision Theory 2015)
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AIMS AND SCOPE. LPNMR 2015 is the thirteenth in the series of international me-
etings on logic programming and non-monotonic reasoning. LPNMR is a forum for
exchanging ideas on declarative logic programming, non-monotonic reasoning, and
knowledge representation. The aim of the conference is to facilitate interactions be-
tween researchers and practitioners interested in the design and implementation
of logic-based programming languages and database systems, and those working in
knowledge representation and nonmonotonic reasoning. LPNMR strives to encompass
theoretical and experimental studies that have led or will lead to the construction of
systems for declarative programming and knowledge representation, as well as their
use in practical applications. This edition of LPNMR will feature several workshops, a
special session dedicated to the 6th ASP Systems Competition, and will be collocated
with the 4th Algorithmic Decision Theory Conference, ADT 2015. Joint LPNMR-ADT
Doctoral Consortium will be a part of the program. Authors are invited to submit pa-
pers presenting original and unpublished research on all aspects of non-monotonic ap-
proaches in logic programming and knowledge representation. We invite submissions
of both long and short papers.
TOPICS. Conference topics include, but are not limited to:

1. Foundations of LPNMR Systems
2. Implementation of LPNMR systems
3. Applications of LPNMR

SUBMISSION. LPNMR 2015 welcomes submissions of long papers (13 pages) or short
papers (6 pages) in the following categories:

- Technical papers
- System descriptions
- Application descriptions

The indicated number of pages includes title page, references and figures. All sub-
missions will be peer-reviewed and accepted papers will appear in the conference
proceedings published in the Springer-Verlag Lecture Notes in Artificial Intelligence
(LNAI/LNCS) series. At least one author of each accepted paper is expected to register
for the conference to present the work. The Program Committee chairs are planning
to arrange for the best papers to be published in a special issue of a premiere journal
in the field. LPNMR 2015 will not accept any paper which, at the time of submission,
is under review or has already been published or accepted for publication in a journal
or another conference. Authors are also required not to submit their papers elsewhere
during LPNMR’s review period. However, these restrictions do not apply to previous
workshops with a limited audience and without archival proceedings.
ASSOCIATED WORKSHOPS. LPNMR 2015 will include specialized workshops to be held
on September 27 prior to the main conference. Currently planned workshops include:

— Grounding, Transforming, and Modularizing Theories with Variables (Organizers:
Marc Denecker, Tomi Janhunen)

— Action Languages, Process Modeling, and Policy Reasoning (Organizer: Joohyung
Lee)

— Natural Language Processing and Automated Reasoning (Organizers: Marcello Bal-
duccini, Ekaterina Ovchinnikova, Peter Schueller)

— Learning and Nonmonotonic Reasoning (Organizers: Alessandra Russo and Alessan-
dra Mileo)

IMPORTANT DATES (TENTATIVE).

— Paper registration: April 13, 2015
— Paper submission: April 20, 2015
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— Notification: June 1, 2015
— Final versions due: June 15, 2015
VENUE. Lexington is a medium size, pleasant and quiet university town. It is located
in the heart of the so-called Bluegrass Region in Central Kentucky. The city is surro-
unded by beautiful horse farms on green pastures dotted with ponds and traditional
architecture stables, and small race tracks, and bordered by white or black fences. The
Horse Museum is as beautifully located as it is interesting. Overall, the city has a nice
feel that mixes well old and new. The conference will be held in the Hilton Lexington
Downtown hotel.
GENERAL CHAIR. Victor Marek, University of Kentucky, KY, USA
PROGRAM CHAIRS.

Giovambattista Ianni, University of Calabria, Italy
Mirek Truszczynski, University of Kentucky, KY, USA

WORKSHOPS CHAIR. Yuliya Lierler, University of Nebrska at Omaha, NE, USA
PUBLICITY CHAIR. Francesco Calimeri, University of Calabria, Italy
CONTACT. lpnmr2015@mat.unical.it
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ACM SIGLOG LOGO COMPETITION

?
ACM SIGLOG is in urgent need of a logo! Accordingly, the

SIGLOG Publicity Committee would like to invite all mem-
bers of the community to come forward with their proposals.
The logo should blend well with the colour scheme of the we-
bsite, the SIGLOG News cover and the ACM logo. SIGLOG
should be written with all capitals.

Please send your designs to publicity@siglog.org by
October 31st, 2014. We expect to announce the winning en-
try by the end of the year 2014. The winner will receive a
T-shirt with the logo.
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